拿了诺贝尔化学奖的量子点,究竟是个啥?

1983年[2],路易斯·E·布鲁斯(获奖第二位)则首次证明了,量子点的量子效应是存在尺度上限的,而且,激发出来的光波长,随着量子点尺度大小的变化而变化,这背后的原理涉及到量子限域效应(当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级)。

一般来说,量子点往往2~20nm大小,拥有1~100个电子-空穴对,最多拥有数千个原子。

2023年诺贝尔化学奖颁给了蒙吉·G·巴文迪(Moungi G. Bawendi)、路易斯·E·布鲁斯(Louis E. Brus)、阿列克谢·伊基莫夫(Alexey I. Ekimov),以表彰他们在量子点的发现和发展方面的贡献。

诺贝尔化学奖为啥颁给了物理学?量子点究竟是个啥?

诺贝尔:100年后还有诺贝尔化学奖吗?

诺贝尔化学奖委员会:祖师!没有了,只有诺贝尔理综奖。

一直以来,诺贝尔化学奖都有理综奖的别称,常常颁发给生命科学领域。

今年却显得更加偏门,颁给了物理学领域(虽然曾经也抢过,但大多还是被生命科学抢去了)

虽然诺贝尔奖委员会搬出了化学性质的经典定义:元素的性质取决于它拥有的电子数量。

然而,蒙吉·G·巴文迪(Moungi G. Bawendi)、路易斯·E·布鲁斯(Louis E. Brus)、阿列克谢·伊基莫夫(Alexey I. Ekimov)三人,之所以获奖的量子点——其核心却是量子效应。

图/诺奖官网

而且和昨天的诺贝尔物理学奖阿秒物理学一样,都涉及到和电子相关的量子力学效应。

要知道这个量子点是什么,我们还需要了解一些铺垫性知识:

我们知道,阳光照射物质会呈现出不同的颜色,产生不同颜色的原理,有多种,例如:

1. 色散:阳光不同成分折射率不同,遇到三棱镜等特殊构造的玻璃,会出现色散现象。

2. 反射/透射:材料吸收了一定颜色的光,表现出剩余光的颜色。例如叶绿体的绿色。

3. 激发:材料的电子吸收能量,然后释放能量,激发出光子。根据能量的来源,又可以分成电致发光、光致发光、声致发光等等。

例如,LED灯是电致发光;日光灯则是光致发光。灯管内气体放电产生紫外线,然后激发管壁上的发光粉而发出白光;而螳螂虾一拳打出2万℃并发光,便是声致发光。

很多发光材料,同时包含多种激发发光过程。但无论是哪一种发光形式,都涉及到电子吸收能量,轨道跃迁、轨道跌落,然后以光子的形式释放能量。

如果现在给你一个自由创造大量颜色的任务,你会选择以上哪几种?

很明显,第1种和第2种都需要直接pass,无论怎么对光进行色散/吸收/反射,分离的也是现成的光,而不能创造光。

只有第3种才能自由创造各种颜色的光。

而三位科学家创造的量子点,正是这种材料,利用接近第3种的原理,创造出了丰富多彩的颜色。

要理解量子点的原理,这里又还需要铺垫一点半导体相关的知识:量子点本质上就是一种纳米级电子半导体材料,是通过电子与空穴复合来释放能量发光的。

电子空穴是什么?

为了方便理解,这里先用半导体二极管原理来解释。

碳、硅、锗、锡、铅等IV族元素,最外层具有4个价电子,它们很容易形成稳定的共价键结构,所以不容易导电。但如果加入不同的杂质便可能改变它们的导电能力。

拿硅来举例,如果向硅晶体加入硼杂质,那么当硼与硅形成共价键后,便会少一个电子,从而出现“空穴”。这样的半导体很容易获得电子,因此被称为P型半导体(P为Positive缩写,为正极)

相反,如果向硅晶体加入磷杂质,那么磷最外层的5个电子与硅形成共价键后,就会多出一颗电子,从而容易失去电子,因此被称为N型半导体(N为Negative缩写,为负极)

如果把P型半导体和N型半导体结合在一起(简称PN结),那么电子就会从N向P扩散。

如果通上相同方向的电源,那么就会形成电流。如果通电方向相反,则不会导电。

显而易见,PN结和电子二极管一样,都具有单向导电性。

LED灯的光,则是通过电子与空穴复合,而产生的电致发光。

这个过程,虽然从原子层面来说,电子已经从一个原子跑到了另外一个原子上,然而不同的电子性质是一样的,一个电子获得能量离开空穴时,相当于一个跃迁过程。而进入另外一个空穴,本质上相当于跌落轨道的过程,因此多余的能量会以光子的形式得到释放。

而量子点发光的时候,本质上是创造了纳米级的“PN结”,来达到电子-空穴复合发光的过程。

当然,这里的“PN结”并不叫PN结,而是叫做电子—空穴对

a-光致发光;b-电致发光

对于光致发光的量子点来说,光激发的同时就会产生电子-空穴对。

电致发光的量子点,则依赖电子-空穴对的传输和注入(更加接近于纳米级的LED灯)

一般通过外部电极、掺杂、应变、杂质等多种形式来产生电子-空穴对。

对比昨天的物理学诺贝尔奖,我们可以发现,量子点和阿秒物理学相似之处还真是不少。都是从宏观到微观,最终达到电子层面。

既然“电子-空穴对”导致的发光,和原子发光都是相似的量子效应,这就决定了它存在一个尺度上限。

1980年,阿列克谢·伊基莫夫(获奖第三位),成功在有色玻璃中创造出了,能通过量子效应影响玻璃颜色的氯化铜纳米颗粒[1]

本质上,他创造出了最早的量子点。

1983年[2],路易斯·E·布鲁斯(获奖第二位)则首次证明了,量子点的量子效应是存在尺度上限的,而且,激发出来的光波长,随着量子点尺度大小的变化而变化,这背后的原理涉及到量子限域效应(当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级)

一般来说,量子点往往2~20nm大小,拥有1~100个电子-空穴对,最多拥有数千个原子。

1993年,蒙吉·G·巴文迪(获奖的第一位)则是通过改进化学生产方法,制作出了几近完美的量子点[3]

这个方法本质上是一种晶体生长方法(或化学溶液生长法)

虽然合成用了化学方法,但21世纪之后,还发展出了其它非化学的合成方法。虽然量子点的发现,最开始是胶状溶液中,但后来与传统化学越来越远。

简单来说,就是把能形成硒化镉(或硫化镉、碲化镉)的物质(硫、硒、碲的三正辛基氧膦溶液+二甲基镉)注射进入200~300℃的热溶剂中,生成硒化镉(或硫化镉、碲化镉)

一直注射到针头周围溶剂饱和,从而产生硒化镉小晶体。

随着溶剂冷却,晶体就会停止生长。

这个时候,再次加热,晶体就会持续增长,而且加热时间越长晶体就越大。因为量子限域效应,不同大小的晶体,可以产生不同颜色的光。

通过自由控制,便可以覆盖从蓝到红的所有可见光。

量子点一般由IV、II-VI,IV-VI、III-V等元素组成,例如硅、锗、硫化镉、硒化镉、碲化镉、硒化锌、硫化铅、硒化铅、磷化铟、砷化铟等等,大体上还是半导体材料。

巧合的是,半导体产业中的PN结制造方法,也有晶体生长技术。可以看出量子点和半导体二极管的确很有相似之处,很像一个纳米二极管。通过量子点来制造芯片,其实也是量子芯片的一个发展方向之一。

随着工艺越来越复杂,量子点可涉及到电致发光、光致发光、声致发光等多种发光方法。

最早广泛利用量子点的其实是生物学领域。

1997年开始,质量越来越高的量子点开始作为生物探针来使用,例如生物荧光标记可直接用于活体细胞。不仅在21世纪,助力分子、细胞生物学迅猛发展,还掀起了量子点研究热潮。

量子点具有自由可控、稳定性高、兼具宽窄发射谱、较大斯托克斯位移、生物相容性好、寿命长等各种优点。时至今日,已经广泛应用于各种材料领域,尤其是量子点显示技术(QLED)在电视和电脑色彩显示上的飞速发展。

总的来说,无论在生命科学研究、光学(显示/色彩)运用,还是在未来芯片研发领域,量子点都具有广阔的前景。

蒙吉·G·巴文迪(Moungi G. Bawendi)、路易斯·E·布鲁斯(Louis E. Brus)、阿列克谢·伊基莫夫(Alexey I. Ekimov)三人的贡献,正在改变我们的现在和未来。

他们获得诺奖,实至名归。

参考文献

[1] Ekimov A I. Quantum size effect in three-dimensional microscopic semiconductor crystals[J]. Jetp Lett., 1981, 34: 345.

[2] Brus L E. Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state[J]. The Journal of chemical physics, 1984, 80(9): 4403-4409.

[3] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.

本文来自微信公众号:瞻云(ID:zhanyun2028),作者:瞻云

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2023年10月5日 09:21
Next 2023年10月5日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日