35年来首次证明:AI也会举一反三

//www.nature.com/articles/s41586-023-06668-3#auth-Brenden_M_-Lake-Aff1

研究人员提出了一种新的神经网络训练方法。

论文作者同时还强调,如果孩子们在自然成长的体验中也有类似MLC这样的组合和激励机制,就可以解释人类的系统性泛化能力的来源。

研究人员展示了MLC如何通过实践来提高神经网络的组合技能(Compositional。

为了证明MLC的能力,研究人员在相同的系统泛化测试中并排对比评估了人类和机器的能力。

35年来,认知科学、人工智能、语言学和哲学领域的研究人员一直在争论神经网络是否能实现类似人类的系统泛化。

具体来说,人们一直认为,AI无法像人类一样具有“系统泛化”(systematic generalization)能力,不能对没有经过训练的知识做到“举一反三”,几十年来这一直被认为是AI的最大局限之一。

最近,NYU和西班牙庞培法布拉大学的研究者首次证明——它可以!

他们在这个方向取得了里程碑式的突破,论文已经刊发在了Nature上。

论文链接:https://www.nature.com/articles/s41586-023-06668-3#auth-Brenden_M_-Lake-Aff1

研究人员提出了一种新的神经网络训练方法——MLC(Meta-Learning for Compositionality),能够大幅提高神经网络“举一反三”的能力,甚至能够超越人类!

人类之所以能够做到举一反三,快速掌握复杂语言的含义或者某种技巧,是因为人类天生具有“系统泛化”的能力。

举个例子,如果我们从未听过“秦始皇戴小红帽——赢到姥姥家了”这个短语,但知道“秦始皇叫嬴政”,知道“小红帽”的故事,就能理解这个歇后语,还能把它用在正确的地方。

但就算是“先进如GPT-4”的AI模型却还是无法理解这个歇后语,即使他知道“秦始皇叫嬴政”,以及“小红帽”的故事。

研究人员通过一种新的神经网络训练方法——MLC在变化的任务环境中训练模型,使模型逐步获得组合词汇含义的系统性推理能力。

结果表明,MLC模型不仅可以做出符合逻辑的响应,还能捕捉人类偏差性错误的规律,在人机对比中展现出惊人的人类化思维。

甚至,通过MLC训练出来的模型,系统泛化能力已经碾压了GPT-4。

论文作者同时还强调,如果孩子们在自然成长的体验中也有类似MLC这样的组合和激励机制,就可以解释人类的系统性泛化能力的来源。

这项研究可能会对人工智能和认知科学都产生深远影响。

它表明合适的方法可以让标准神经网络获得人类语言思维的核心特征——系统性复合推理能力。

尽管当今最强大的AI模型(例如 ChatGPT)可以在许多对话场景中发挥作用,但在对未训练过的知识的理解能力上,仍然存在不足。

某种程度上导致了模型“幻觉”问题一直无法有效解决。

针对LLM的局限,作者强调,“研究通过MCL来解锁了系统性泛化(SG)的更加强大的能力之后,也可能帮助大语言模型来克服自身固有的缺陷。”

理解系统性泛化(Understanding Systematic Generalization)

这一突破性的研究在于系统性概括的概念。当我们人类在不同的环境时,拥有毫不费力地适应和使用新学单词的能力。

例如,“Photobomb”是一个英语俚语,指的是在拍照时突然出现在照片中,通常是有意而为之,以吸引注意力或制造幽默效果。

一旦我们理解了“Photobomb”这个词,我们就会本能地知道如何在各种情况下使用它,无论是“两次Photobomb”还是“在使用Zoom期间进行Photobomb”。

同样地,当人类理解“狗追猫”这样的句式结构之后,可以轻松掌握“猫追狗”的含义。

然而,人类固有的举一反三的理解和泛化能力,对于人工智能来说一直是具有挑战性的前沿领域。

传统的神经网络是AI研究的支柱,但是它不具备理解和泛化能力,神经网络只会努力合并一个新单词,否则需要靠大量的样本进行广泛的训练。

几十年来,这种受限的泛化性一直是AI研究人员争论的话题,关于神经网络作为人类认知过程的真实反应是否可行,引发了大量的讨论。

在本文中,研究人员提供了证据,证明神经网络可以通过研究人员提出的MLC(Meta-Learning for Compositionality)系统实现类似人类的系统泛化。

MLC 是研究人员提出的一种优化程序,旨在通过一系列少样本合成任务来激励系统性(如下图1)

研究人员展示了MLC如何通过实践来提高神经网络的组合技能(Compositional Skills)

MLC获得一个新词(或规则系统)并尝试系统地使用它。在不断地修正和更新“理解”之后,可以对下一个新词重复该过程。

研究人员构建的MLC只使用了常见的神经网络,没有添加符号机制,也没有手工设计的内部表示或归纳偏差。

相反,MLC提供了一种通过高级指导和/或直接人类示例来指定所需行为的方法;然后要求神经网络通过元学习(Meta Learning)来培养正确的学习技能。

为了证明MLC的能力,研究人员在相同的系统泛化测试中并排对比评估了人类和机器的能力。

具体来说,研究人员,在伪语言(pseudolanguage)指令学习任务中使用代数或数学概念,以测试人类和机器学习系统对这些概念的理解和应用能力。

还研究了人们对高度模糊语言的探测反应。这些语言探测的设计目的是了解人类在面对模糊信息时的倾向或偏差。

即人类如何进行归纳推理,以及这些倾向或偏差是如何可能促进或者阻碍系统性泛化。

在对结果进行了评估之后,研究人员发现,MLC实现(甚至超过)人类水平的系统泛化!

当人类行为偏离纯粹代数推理时,MLC 还会产生类似人类的错误模式。

这表明神经网络是一种卓越的建模工具,可用于细致入微的人类组合行为。

在最后一组模拟中,研究人员展示了 MLC 如何提高流行基准的准确性,以实现少样本系统泛化。

研究细节(The Study in Detail)

为了更深入地研究神经网络的功能及其语言泛化的潜力,作者进行了全面系统的实验,其不仅研究了机器,25名人类也交叉地参与其中,以此作为AI的表现基准。

在实验中使用了一种伪语言,即参与者不熟悉的单词,这样能够确保参与者真正第一次学习这些术语,从而为测试泛化性能提供一个可信的baseline。

如上图(左侧),原始类别包括“dax,wif,lug”等单词,它们象征着类似于“jump,skip”跳过与跳跃的基本动作(下图左侧)

另一方面,使用更抽象的功能词,比如“blicket,kiki,feg”,为之前的原始词术语的应用和组合制定了规则,从而推断出“skip twice,walk backwards”等序列。

在培训参与者的过程中还引入了视觉元素,每一个原始单词都与特定颜色的圆圈相关联。

例如,如下图,红色圆圈代表“dax”,而蓝色圆圈代表“lux”。

制定好颜色单词映射规则后,接下来,向参与者展示原始语和功能词的组合,并附带彩色的圆圈图案。

例如,一个短语“fep”与三个红色圆圈配对,说明“fep”可能代表一个动作的三次重复。

此外,为了衡量参与者的理解能力和系统性的概括能力,还向它们展示了原始词和功能词的负责组合。参与者的任务是准确地推断出圆圈的颜色和数量,并进一步给出正确的排列顺序。

影响力和专家意见(Implications and Expert Opinions)

这项研究不仅仅是人工智能研究史册上的又一个增量,还代表了范式的转变。

神经网络的性能密切反映了类人系统的泛化能力,这引起了广泛学者和行业专家的关注。

著名约翰霍普金斯大学语言专业认知科学家Dr. Paul Smolensky表示:“在训练过程中能让网络拥有系统化能力的重大突破。”

如果可以训练网络进行系统泛化,那么这些模型就可能彻底改变聊天机器人、虚拟助手等诸多应用程序。

然而,这种发展不仅仅是技术的进步,它还触及了AI界长期存在的争论:“神经网络是否真的可以视作准确模拟人类认知的工具?”

在过去的近四十年里,这个问题一直是AI研究者们争论不休的焦点。尽管有些人相信神经网络有潜力模拟类似人类思维过程,但另一些人依然对它们的天生局限表示怀疑,特别是在语言泛化领域。

这项研究的结果带来了新的希望,使人们变得更加乐观。

正如纽约大学认知计算科学家、该研究的共同作者Brenden Lake所指出的,神经网络过去可能一直在取得艰难的进展,但通过正确的方法,它们确实可以被调整和训练,以更好地反映人类认知的各个方面。

迈向人机无缝协同的未来

AI从起初的萌芽阶段到如今强大,经历了不断地演化和突破。最近在训练神经网络系统的概括语言方面取得的成就再次证明AI的无限潜力。

当我们处于这个关头时,有必要认识到这些进步的广泛应用。

我们正一步步接近未来:机器不仅能理解人类的语言,还能掌握细微的差别和语义,从而促进更加无缝和直观的人机交互未来。

参考资料:https://www.nature.com/articles/s41586-023-06668-3

本文来自微信公众号:新智元 (ID:AI_era),作者:新智元

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2023年10月27日
下一篇 2023年10月27日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日