GPT应用商店来了,乙方角色的消亡进入倒计时

GPT不受限制的演进,可能将导致我们所熟悉的那种经济循环的终结,乐观者会提议用UBI(全民基本收入)的方式来保障广泛且普惠的消费需求,而悲观者会觉得只能通过强制投资或“编出”新的理念(比如元宇宙和区块链)来给大家造出点GPTs尚无法替代的搞钱理由,当然还有更激进的人(也可能不是人)反问为啥一定要用人来创造需求呢,能不能让GPTs作为虚拟世界的agent自己创造出需求呢。

就在上周,OpenAI召开了首次Dev-Day (开发者大会),隆重发布GPT-4的增强版Turbo,提供了辅助开发的GPT Assistant API。

更令人震惊的,则是上线了GPT应用商店——GPTs——堪比当年iPhone的“App Store时刻”。

但此时此刻,却又不同于彼时彼刻。

回头看,大家都盛赞Apple开启了互联网行业的新纪元,凭空创造出一个价值万亿的全新经济生态(2022 年开发者营业与销售额已达到1.1 万亿美元),养活了全世界千千万的码农。

而当GPTs被公布一分钟后,回过神来的GPT相关开发者们就坐不住了。一个创业者哀叹道“Sam Altman刚刚毁掉了我价值3百万美元的初创公司,只给我留了500美元的OpenAI API抵用券。”

某个仿照马斯克语气的推特号也一通戏虐:“每次OpenAI发布一个功能,就消灭了一家(批)初创公司。你对这件事有什么感想?”

为何业界如此惊诧?其实大家的反应恐怕还有点克制了,当你想明白之后,会发现OpenAI给我们铺就的未来实在是过于刺激了。

乙方角色的消亡进入了倒计时

为什么开发者对GPTs应用商店如此恐慌?

一般评论会说,GPTs允许用户以自然语言描述需求,下达指令和简单调试后,就能部署个人专属的GPT自定义版本,以实现生活或工作中某个特定功能。此外,这个自定义的GPT还能发布出来分享给其他人,以后还可以向使用者收费。

这就让套壳GPT做垂直应用的App瞬间失去了意义,官方逼死同人的节奏啊。

但GPTs真正要命的不止如此,它本质上消除了用户提出需求和获得应用之间的一系列执行过程——GPT都帮你做了。而在此之前,这需要开发者去收集理解相应的需求,然后开发出一个可用的程序,再发布出来给用户使用——你手机里App就是这么来的。

如果没有中间商赚差价,那还需要程序员干啥事?这是直接把开发者们存在的价值给取消了。

没有哪个程序员可以像GPT那样时刻在线,不疲不倦地去改代码和更新,也没有哪个产品经理比客户本身更理解自己的需求,熟悉哪些资源和数据可以调来满足需求。也许客户还是需要人来测试自己鼓捣出的GPTs,但以OpenAI的能力,下次Dev Day如果发布一个能自动测试GPTs的官方GPTs,我也毫不惊奇。

GPTs的出现会逆转从兼容机,到软件,再到App的产业化历程。

最早的计算机用户本身就懂计算机,因此都是自己去编程实现需求的,后来随着大众化才需要开发软件。而在GPT时代,“最好的编程语言是英语”(这句话也不甚准确,所有语言都可以是GPT的母语,它都听得懂),那么每个人都可以用自然语言来向Open AI“许愿”,创造出所需的GPTs为己所用,又回到全民造轮子的岁月了。

这一冲击并不仅限于IT行业,而是会扩散到所有的乙方行业。

从本质上看,乙方都是在帮客户填充从需求到应用之间的执行鸿沟,之所以某件事交给乙方,要么是客户不懂落地实现的具体步骤,要么是乙方人力和设备利用率高,项目熟练度高,在成本和交付周期上比自己做更具性价比。

但用乙方这件事本来就有缺陷,假如交付的是通用产品(如一个SaaS或CRM系统),那么在适配性和学习曲线上就需要前期投入和磨合才能用得顺手;如果乙方提供的是定制化解决方案(如一套规划和咨询),而乙方不知道客户的隐性知识(Tacit Knowledge或Institutional knowledge),那往往需要烦人的博弈和沟通,还不见得乙方真正理解自己的需要,交付出可落地的方案。

而现在,你能想出来的需求,只要提供相应的示例和数据,就可以创造一个GPTs来为你服务。GPTs提供了超低边际成本定制解决方案的一种可能,从GPTs商店pull一个模板,匹配内部的私域知识和定制要求实现一个功能,而且还是比“低代码”更低的“零代码”方式。so easy,还要啥自行车啊。

这是甲方爸爸的终极幻想,也是乙方搬砖狗的末日。

GPTs本质上是对打工人的替代

你可能会反驳,很多甲方自己也不清楚自己要什么,直到你把产品/方案/交付怼到他的头上,正如亨利·福特的那句名言 ——“客户只会说想要一匹更快的马,而我给他们带来了汽车”。

不是所有人都能清晰地创造出自己真正想要的GPTs,也不是所有客户都拥有充足的行业数据和know-how。因此还是需要更有经验的第三方深入到客户自有GPTs的构建中,提供专业技能,甚至直接代为构建和操作,并收取相应的服务和运营费用。

对这种基于客户“人工智障”的商业模式,暂不说其可持续性,这事和乙方搬砖狗又有什么关系呢?现在还需要组建专家团队入驻调研,进行项目执行吗?既然客户需要部署一个特制的GPTs,乙方公司难道不能用GPTs来部署GPTs吗?

乙方公司完全可以基于既往的项目资料和内部数据库,自己训练出各款GPTs为客户执行不同的业务,我相信肯定比培训校招小朋友要快得多,也省得多。

毕竟,只要几小时就可以通读全公司多少代项目经理的经验,用多少客户熬出来的项目记录和交付物,并融会贯通,内化成出口成章的本能。而且只要吃点交流电就可以24小时响应,客户扔来的材料几分钟看完秒回,一晚上出三十版初稿。

更妙的是心理承受能力无穷大,改稿100遍也绝不生气,甚至当客户都崩溃了的时候,乙方GPTs还能及时调整其沟通语气,输出情绪价值。

而最可怕的是,等一个项目做完,乙方GPTs还能以前所未有的颗粒度把项目的全过程数据重新回输到公司的资料库里,并反复复盘,以备未来项目的执行。

这是一个不断精进的完美自循环,而且,再也不存在因为员工跳槽就损失一大块隐性知识和know-how的烦恼了。

GPTs可能是乙方公司的新机遇,但依然是乙方搬砖狗的末日。

当然,这种噩梦乙方员工怎敢独享,其逻辑对甲方员工也是一样的。本次Open AI Dev Day特别用了一个Zapier App的示例:这是一个自动化部署的插件,用于将GPT和上百种App联用起来。你可以用自然语言给GPT下指令,然后GPT通过Zapier来操作你的App进行执行。

欸!这画面,和在钉钉上给员工布置任务有差别吗?

再想想的话,很多中层整天忙活的事情,和GPT对Zapier做的事情有差别吗?

再想想的话,其实基层员工对着电脑和操作台做的事情,和Zapier操作App有差别吗?

如果有差别的话,那就是GPTs不会已读不回,而是24小时想你之所想,及你之所及,勤勤恳恳地把你的想法付诸执行,纵向到底,横向到边。

那么老板干嘛还要雇这么一大帮人夹在中间呢?

这其实也不值得惊奇。钢铁侠搞了那么一大摊高科技项目,但电影里他的工作室里看不到一个雇员,只有一个AI助手贾维斯:他直接给贾维斯下指令,由AI助手分解步骤后,给机器人下操作指令完事了。

在大语言模型的时代,人力资本这个词失去了意义。OpenAI本质上是一家把电能通过GPU转化为智能的“炼金厂”,并通过网线输送到终端用户的屏幕前。当智能像电一样连上插座就能用,为什么还需要在本地部署一群人来给你“蹬踏板发电”。

人力资本回报率太低,就只能算是人力负债。

在满是GPTs的未来,最吃香的是有想法、有客户资源,有数据或是持续生成数据场景的人,也就是“甲方”。而只会出卖脑力劳动,帮别人实现功能或是“代执行”来赚时薪的“乙方”——无论是企业外部的传统“乙方”还是内部搬砖的广义“乙方”,都将逐渐被GPTs挤压生存空间。

在这个过程里,新时代的“PPT纺织女工”和“查数姑”们毫无胜算。

经济循环或被颠覆,人类角色难以定义

如果GPT的大模型基座和GPTs的生态持续发展,最终会变成什么状态?

最初可能会出现很多“一人公司”,这些嗅觉敏锐,行动果决的“超级个体”会抓住GPT带来的机会,用大语言模型放大自己的能力,把独到的洞察和多年累积的经验和数据注入GPTs,创立自己的专业“影分身”直接服务客户。

他们会租用GPTs商店里其他人发布的工具作为自己的AI助手,打造个人品牌,管理和拓展客户网络,搭建行业信息源,处理运营杂事。当一切都搭建调试完毕后,这套系统就可以自动运行,替自己赚“睡后收入”了。

这也算半只脚踏入资本家行列了,而且还是全自动的那种。

找服务,直接和老板谈,没有雇员赚差价。这种模式一开始肯定能在各细分领域获得成本上或是交付质量上的优势,但并不会持久。

对GPTs的生态而言,这是个“甲方”的天堂,想法不过是随时可以pull的模板,最终还是要看谁肚里有数据,手上有客户,脚下有场景,以及最重要的,兜里有钱。

“超级个体”只能抢跑,但正规军用起GPT那才是核武器:头部企业炼出的GPTs用的是最全面的私域知识,可以快速服务最多的客户,并以最快的周期回收项目经验持续升级GPTs,并拓展到更多的其他应用领域。OpenAI在大语言模型上跑通的这种碾压式循环,将会在GPTs商店各个子版块上一次次的复现。

我们常说商业成功的模式永远始于“Be first”,然后在“Be different”和“Be better”上八仙过海各显神通,但最终都会终于“Cheapest and Best and do everything。”

GPTs的生态里这个过程会压缩到惊人的程度,很快我们会看到众多应用端被资本密集,数据密集的“超级企业”占据。这些‘公司’没有员工,只有一个CEO看着(也可能并不需要去看)无数的内部GPTs在执行复杂的业务流程,直接服务于客户。“超级企业”拥有超多GPTs模板的版权,这些版权是被商务GPTs按照业务和财务汇报需求自动化收购而来,并被昂贵的非诉法务GPTs全网24小时维护。

不过等等,如果所有的公司都采用这样的模式,最小化员工数量,老板和用户通过GPTs直连。那么这些产品最终能被谁消费呢?

这让人联想到亨利·福特的另一句名言:“如果福特的员工都赚不到100美元,那么谁来买福特的车呢?”。当GPTs导致资本集中度的极度提高,消灭掉各类小微企业的业务和一般白领的工作,那么我们需要一个完全不同的机制来创造出需求。

GPT不受限制的演进,可能将导致我们所熟悉的那种经济循环的终结,乐观者会提议用UBI(全民基本收入)的方式来保障广泛且普惠的消费需求,而悲观者会觉得只能通过强制投资或“编出”新的理念(比如元宇宙和区块链)来给大家造出点GPTs尚无法替代的搞钱理由,当然还有更激进的人(也可能不是人)反问为啥一定要用人来创造需求呢,能不能让GPTs作为虚拟世界的agent自己创造出需求呢?

这也并非幻想,你看比特币就已经创造出一个百亿的挖矿产业,凭空创造了现实世界里的显卡需求。

也许以后的文化产业是这样的:Netflex GPT矩阵根据网络趋势数据自动编写剧本,用Text2Video生成影像,用HeyGen配音,社交网络自动宣发,然后被GPTs影评机器人观看并在推特上自动点赞转发,最终被Netflex的网络趋势程序追踪到,刺激下一批AIGC影视的生成。

没有比这更高效的经济循环了,永远不会有需求不足的烦恼,所有的GPTs都激情满满,work hard and play hard,24小时不停扮演设定的角色,为GDP数字的增长做贡献。欢迎来到没有人的美丽新世界?

本文来自微信公众号:风声OPINION(ID:ifengopinion),作者:刘正

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2023年11月18日
下一篇 2023年11月18日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日