OpenAI宫斗中被忽略的一部分:AI对齐

GPT-3。对齐算法会在大模型运行过程中分走部分算力资源,也会影响大模型输出的结果,人们常把这种影响叫做“性能阉割”,把对齐分走的算力称为“对齐税”。taxes):对齐模型相比未对齐模型在某些能力上表现下降,需要更多计算资源来弥补性能。

以性能税为例,由于对齐模型在输出结果上更“保守”,用户想用它得到满意的结果,需要更多的算力,也需要调用更多次。

OpenAI公司与它的大模型产品ChatGPT最大的共同点是什么?

人们知道它们每天发生了什么,但是不知道是如何发生的。

我们使用 AI 大模型,惊喜于它给出的每一个回复,但还没有谁弄清楚 AI 的智能是如何起作用的。为了确保大模型能够按照人类的意愿工作, 几乎每个大模型产品内部都会被注入一段算法,这段算法保证 AI 工作与人类意愿对齐。不同的力量都在试图对齐这家公司,Ilya Sutskever 成为“执剑者”,Sam Altman 给出了反击,双方的两种立场让这家 AI 大模型公司内部的分歧浮出水面。

这种分歧会体现在理念、公司方向、利益和资源分配,以及产品的市场表现等方面。把目光聚焦在分歧之上,对于大模型创业公司来说更有意义。

技术追求和商业扩张主导着商业体成长,OpenAI 和大多数商业公司一样,长期以来保持着两股力量的微妙平衡,直到 11 月 17 日,天平发生了倾斜。

这种平衡是如何保持的?围绕 AI 有哪些分歧?裂缝又是如何扩大的?ChatGPT 现象让全世界知道了大模型、Transformer 等新事物,但另一个起关键作用的力量 —— AI 对齐被忽视了。

被忽视的算法

OpenAI 在初代 GPT-3 上投喂了 3000 亿单词的语料,其中拥有 1750 亿参数。这样训练出来的模型就像掌握了世界知识的儿童,懂得很多,但交流困难。

让 OpenAI 在全世界范围内破圈的 ChatGPT 来自于 GPT-3 的变体,它比 GPT-3 的表现更稳定,更能够模拟人与人之间的正常对话。

ChatGPT 一发布就成为现象级产品,在此之前,GPT-3 的 API 已经推向市场很长时间,但仅在小范围引发讨论。

成就 ChatGPT 的关键技术是 RLHF 算法 —— 基于人类反馈的强化学习。

GPT-3 在与人的交流中给出的回答质量参差不齐,OpenAI 通过人工干预的方式,对高质量回答标记正反馈,从而强化 GPT 给出更多高质量的回答。这样的工作得到了出乎意料的效果,ChatGPT 因此有了建模对话历史、增加对话信息量,以及拒绝回答超纲问题等能力。RLHF 算法就像是家长的角色,帮助掌握了知识的儿童学会顺畅地沟通表达。可需要强调的是,RLHF 并没有额外注入能力,而是帮助大模型解锁了能力。

比如,ChatGPT 拒绝回答问题时会回复统一的开头:“作为 OpenAI 训练的语言模型”。这句话因为在 RLHF 训练中得到了更多的正反馈,因此被 ChatGPT 拿来当作标准模板。事实上,并没有一个命令让 ChatGPT 必须使用这句话。

OpenAI 认为,ChatGPT 的突破之所以可能,离不开 RLHF。而 RLHF 算法的工作就叫做 AI 对齐。

AI 对齐是为了保证 AI 按照人类的意图和价值观做事,给出人类有用的、诚实的和无害的结果。在今天运行的大模型训练当中,对齐已经成为最为必要的部分之一。

除了上面提到的 ChatGPT 的例子,AI 对齐还要解决 AI 在交流中会给出错误信息和算法歧视等问题,被人类滥用、“越狱”等问题,以及应对未来随着 AI 能力“涌现”而可能出现的失控风险。因此可以把 AI 对齐比作是一场人类跟 AI 进化的赛跑,更强的 AI 系统需要更多的对齐工作,也面临更高等级的风险。

但 AI 大模型内部原理对于前沿的 AI 实验室来说仍然是个“黑箱”,这就要求 AI 对齐要尽量跑在大模型的前面,并要求大模型是一个稳定的研究对象。

OpenAI 超级对齐负责人 Jan Leike 做过一个预判,构建高性能的强 AI 系统需要两个因素:能力和对齐。但在当前的弱 AI 时期,大模型没有能力带来灾难性后果,与 GPT 给人类带来的惊喜相比,AI 对齐的重要性存在被轻视的情况。对齐算法会在大模型运行过程中分走部分算力资源,也会影响大模型输出的结果,人们常把这种影响叫做“性能阉割”,把对齐分走的算力称为“对齐税”

CEO和首席科学家的分歧

回到 OpenAI 的这场闹剧,如果把 OpenAI 看作一个 AI 大模型,Sam Altman 主张提升能力,通过融资和商业化等操作吞噬巨量资源,追求变快变强。Ilya Sutskever 领导的部分则像 AI 对齐一样的存在,主张小心翼翼地把车开稳。

随着 AI 大模型发展加速,OpenAI 意识到要把对齐工作提升到新的高度。今年 7 月,OpenAI 宣布成立超级对齐团队(Superalignment),由 Ilya Sutskever 和 Jan Leike 两位科学家领导,他们将带着公司 20% 的算力资源,在 4 年内解决超智能 AI 系统的价值对齐和安全问题。

与此同时,Sam Altman 带着 GPT 进化,连续推动发布性能更强的 GPT 版本。

可以看到,两个工作团队即使不存在分歧,至少也存在张力,裂缝可能从这里开始产生。

Ilya Sutskever 指责 Sam Altman 在与董事会的沟通中始终不坦诚,阻碍了董事会履行职责的能力。而董事会的职责是确保 OpenAI 作为一家非营利组织能够开发造福全人类的“通用人工智能 AGI”。

在今年仅剩 6 人的董事会中,有 4 人更认可 AI 安全的重要性,Ilya Sutskever 因此能够使用投票权开除 Sam Altman。

Ilya Sutskever 曾提到,他参与创建 OpenAI 的动机之一,是为了探讨和解决 AGI 可能带来的问题,包括技术和道德方面的挑战。当他看到或者被告知这种挑战首先出现在公司内部而不是 AI 当中时,他有理由为了自己的信念行使权力,裂缝由此扩大。

可他始终没有给出具体的例证说明 Sam Altman 不坦诚在哪里,会带来哪些后果。Ilya Sutskever 挑起的风波就像 AI 对齐工作中被拿走的“对齐税”,他暂时限制了 OpenAI 的能力,又无法说明在他眼中这种限制的必要性。

房间里有一头大象,有少数人看到了,但只有更少数人行动。人们要做出符合自身角色和价值观的选择,因此分歧总是会不可避免地出现。

即便 Sam Altman 在很多时候是 OpenAI 安全政策的倡导者,但人们无法追问他的倡导是出于应对监管的需要,还是他真的看到了那头大象。即便 Ilya Sutskever 深知算力对 AI 的重要性,看到 AI 更远的未来的他只能把这种重要性放在价值排序的次席。

事件最后的焦点指向 OpenAI 的董事会,在复杂的矛盾中,董事会只支持做出 0 和 1 的选择,在功能上没有与这家公司的价值对齐。

闹剧以 Sam Altman 回归暂时结束,五天前罢免他的董事会解散,新的董事会雏形将由三人组成,Quora 首席执行官 Adam D’Angelo,Facebook 和 Salesforce 前高管 Bret Taylor,以及前美国财政部长 Lawrence H. Summers。

OpenAI 完成了它的对齐。

隐藏的模型

AI 对齐被大模型的声量遮盖,但暗暗决定着大模型的命运。

GPT 的发展和人类的反应一度超出了 OpenAI 的预料,在很多研究人员眼中,市面上的模型仍然远非完美,甚至只是半成品。他们对生成式人工智能推向市场的速度和规模感到担忧。

与之对应的,AI 对齐的重要性已经成为 OpenAI、DeepMind、Anthropic 等前沿 AI 实验室的共识。

按照 OpenAI 超级对齐工作负责人 Jan Leike 的说法,各家公司会很快拥有能力水平相当的预训练语言模型,AI 对齐将决定产品的竞争力。

而影响竞争力的关键是“对齐税”。

Jan Leike 把“对齐税”总结为三类:性能税、研发税、上线时间税。

  • 性能税(Performance taxes):对齐模型相比未对齐模型在某些能力上表现下降,需要更多计算资源来弥补性能。

  • 研发税(Development taxes):对齐模型研发工作消耗的成本,如研究人员时间、计算资源、人工成本等。

  • 上线时间税(Time-to-deployment taxes):从预训练模型到可用的对齐模型上线所需要的时间成本。

以性能税为例,由于对齐模型在输出结果上更“保守”,用户想用它得到满意的结果,需要更多的算力,也需要调用更多次 API,性能税因此影响到产品的定价,进一步影响到用户规模。

Jan Leike 用一个例子说明了这种相关性:OpenAI 的 DALL·E 2 模型在市场规模上不如 Stable Diffusion 和 Midjourney,因为后面两个模型采取了较少的对齐限制。

另外,随着大模型能力不断增强,原来的对齐技术可能被 AI 绕过,需要不断更新对齐技术来跟上大模型迭代,这也可能导致研发税和上线时间税的增加。

AI 对齐在大模型训练中的存在感远非只有“对齐税”,存在于 OpenAI 的裂缝有更多延伸。

训练 ChatGPT 的 RLHF 算法证明了对齐的价值,但它依赖大量人工参与,只能作为初阶的对齐工具使用。更复杂的 AI 运行会涉及巨量的需要干预的环节,这样的对齐工作只能交给另一个或者一些 AI 来完成。即,用 AI 对齐模型帮助 AI 大模型对齐。

可以把 OpenAI 超级对齐团队的工作看作是研发 AI 对齐模型,在拥有最强大 AI 的实验室内部隐藏着一个将用来管理 AI 的 AI。其中涉及到“解剖” AI 大模型、AI 对抗训练、以及这个 AI 对齐模型的对齐。

GPT 等大模型被设计用来处理自然语言,它的输出结果可以被用户部分地分辨真假。而 AI 对齐模型的输出结果会更难验证,越狱行为更隐蔽,因此需要更严格地对齐。

吊诡的地方就在于此,认为大模型发展太快,存在安全问题的 Ilya Sutskever,做着比 Sam Altman 更激进的工作。

低垂的果实

AI 能力的“涌现”来自于训练量,扩大训练规模成了玩家们坚信的方向,结果是天文数字的训练成本投入。

GPT-3 把大模型训练参数提高到千亿规模,开启了大模型训练的规模竞赛。百度文心、阿里通义、华为盘古等头部公司的大模型训练量都同步来到千亿。而最新的 GPT-4 的参数规模又上一个台阶,到达了百万亿。 

却有观点认为,训练规模给大模型带来的边际效益呈递减趋势,有人称为“数字泡沫”或者“AI 版摩尔定律”,在一定程度,AI 对齐工作成果支持了这种观点。

OpenAI 在博客中提到:安全与大模型能力息息相关。一方面强调在 AI 进化过程中安全问题的重要性。另一方面也指出,AI 对齐训练是提升 AI 能力的隐藏路径。

后一种情况在 InstructGPT 当中得到了验证。与 GPT-3 相比,经过对齐的 InstructGPT 在输出结果时更符合人类要求,InstructGPT 减少了生成有害内容的情况,也能给出更多真实可靠性的信息。

不仅如此,InstructGPT 比 GPT-3 使用更少的算力,它的训练参数减少了 100 多倍,仅 13 亿规模。

经历 OpenAI 的闹剧,赛道上的玩家或许会认识到,把所有的成本放在算力和规模之上过于奢侈,在追求超大规模、超高算力的路上存在未被发现的“低垂的果实”。

而面对即将到来的淘汰赛,不同玩家将必须在 Ilya Sutskever 和 Sam Altman 之间选边站。

本文来自微信公众号:电厂(ID:wonder-capsule),作者:肖余林,编辑:高宇雷

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2023年11月23日
下一篇 2023年11月23日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日