它号称ChatGPT最强平替,大更新后表现如何?

上下文翻倍,Claude。

在语言模型上,长上下文能够提供更精确的用法和含义,有助于消除歧义,帮助模型生成连贯、准确度的文本,比如“苹果”一词出现在“采摘水果”或“新款。

二者的反应速度没有拉开差距,但免费版。

检索只是“小儿戏”,作为提高学习或工作效率的工具,我们需要的是更“聪明”的模型。

答是能答得上来,能不能答对才是关键。

Claude。

也就是说,Claude。

如果问当下最强的 AI 助手是哪个?那毋庸置疑,绝对是 ChatGPT。

前不久 ChatGPT 猝不及防地崩了,直接在网上炸出一大批重度用户。靠它完成作业的学生党,一时之间面对论文无从下笔,靠它“续命”的打工人更是连班都不想上了。

今年以来,ChatGPT 每隔一段时间就会“暴毙”,号称其最强平替的 Claude 或许是你最可靠的备选方案。

上下文翻倍,Claude 2.1 大更新

恰巧,近日 Claude 宣布了一波大更新。以往 Claude 能处理的上下文只有 10 万 token(token 是文本处理中的最小单位,如单词或短语),现在 Claude 2.1 Pro 版能处理高达 200K 上下文。

Anthropic 官方表示,200K 上下文约等于 150000 个单词或 500 页文本,这意味着你可以上传代码库、财务报表或长篇文学作品,供 Claude 进行总结、问答、预测趋势、比较和对比多个文档。

那它能处理汉语的能力有多强呢?我们可以以此前饱受争议的 Yi-34B 做个简单说明。同样是发布支持 200K 超长上下文窗口版本, Yi-34B 可以处理约 40 万汉字超长文本输入,约等于一本《儒林外史》的长度。

在语言模型上,长上下文能够提供更精确的用法和含义,有助于消除歧义,帮助模型生成连贯、准确度的文本,比如“苹果”一词出现在“采摘水果”或“新款 iPhone”上,含义就完全迥异。

值得一提的是,在 GPT-4 尚未恢复实时联网功能之前,免费的 Claude 2.0 就已经能够实时访问网页链接并总结网页内容,即使到了现在,也是 GPT-3.5 所不具备的优点。

免费版 Claude 还能读取、分析和总结你上传的文档,哪怕碰上“打钱”的 GPT-4,Claude 处理文档的表现也丝毫不虚。

我们同时给当下网页版的 Claude 和 GPT-4“喂”了一份 90 页的 VR 产业报告,并询问同样的问题。

二者的反应速度没有拉开差距,但免费版 Claude 的回复反而更流畅,且答案的质量也略高,而 GPT-4 的检索功能还会因为分页和视图受到限制,相当不“灵性”。

检索只是“小儿戏”,作为提高学习或工作效率的工具,我们需要的是更“聪明”的模型。当我让它们分析 VR 行业五年后的变化格局,虽然表达的观点都差不多,但 Claude 以富有逻辑的分点作答取胜。

答是能答得上来,能不能答对才是关键。过去一年里,我们目睹不少被大模型“满嘴跑火车”坑了的悲伤案例。Anthropic 称 Claude 2.1 的虚假或幻觉类陈述减少了 2 倍,但它并没有给出明确的数据,以至于英伟达科学家 Jim Fan 发出质疑:“最简单实现 0% 幻觉的解决方案就是拒绝回答每一个问题。”

Anthropic 还设计了很多陷阱问题来检验 Claude 2.1 的诚实度。多轮结果表明,遇到知识的盲区,Claude 2.1 更倾向于不确定的表达,而不是生造似是而非的回答来欺骗用户。

简单点理解就是,假如 Claude 2.1 的知识图谱里没有“广东的省会不是哈尔滨”这样的储备,它会诚恳地说“我不确定广东的省会是不是哈尔滨”,而不是言之凿凿地表示“广东的省会是哈尔滨”。在 Claude 看来,这也是它相较于 ChatGPT 的优点。

Claude Pro 的订阅费用约为 20 美元,使用次数达到免费版的五倍,普通用户可以发送的消息数量将根据消息的长度有所不同。还剩 10 条消息时,Claude 就会发出提醒。

假设你的对话长度约为 200 个英语句子,每句 15~20 个单词,那么你每 8 小时至少能发送 100 条消息。若你上传了像《了不起的盖茨比》这样大的文档,那么在接下来的 8 小时里你可能只能发送 20 条消息。

除了普通用户,Claude 2.1 还贴心地根据开发者的需求,上线了一项名为“工具使用”的测试版功能,允许开发者将 Claude 集成到用户已有的流程、产品和 API 中。

也就是说,Claude 2.1 可以调用开发者自定义的程序函数或使用第三方服务提供的 API 接口,可以向搜索引擎查询信息以回答问题,连接私有数据库,从数据库检索信息。

你可以定义一组工具供 Claude 使用并指定请求。然后 Claude 将决定需要哪种工具来完成任务并代表他们执行操作,比如使用计算器进行复杂的数值推理,将自然语言请求转换为结构化 API 调用等。

Anthropic 也作出了一系列改进来更好地服务 Claude API 的开发者,详情如下:

  • 开发者控制台优化体验和用户界面,使基于 Claude API 的开发更便捷。

  • 更容易测试新的 prompt(输入提示或问题),有利于模型的持续改进。

  • 让开发者像在沙盒环境中迭代试错不同的 prompt。

  • 可以为不同的项目创建多个 prompt 并快速切换。

  • prompt 的修改会自动保存下来,方便回溯。

  • 支持生成代码集成到 SDK 中,应用到实际项目中。

此外,Claude 2.1 还引入了“系统提示”功能,这是一种向 Claude 提供上下文和指令的方式,能够让 Claude 在角色扮演时更稳定地维持人设,同时对话中又不失个性和创造力。当然,不同于简单 Prompt 的应用,该功能主要是面向开发者和高级用户设计的,是在 API 接口使用的,而不是在网页端使用。

和 Claude 2.0 一样,Claude 2.1 每输入 100 万 token 需要花费 8 美元,比 GPT-4 Turbo 便宜了 2 美元,输出为 24 美元,比 GPT-4 Turbo 便宜了 6 美元。适用于低延迟、高吞吐量的 Claude Instant 版本每输入 100 万 token 需要收费 1.63 美元,输出为 5.51 美元。

ChatGPT 杀手还是平替?

就目前而言,虽然 Claude 2.1 表现很强悍,但仍只能充当 ChatGPT 宕机的替代品,想要颠覆 ChatGPT 还有很长的路要走。打个不太严谨的比方,Claude 2.1 就像是丐版的 GPT-4。

以 Claude 2.1 Pro 最擅长的 200K 为例,尽管 Claude 2.1 Pro 理论处理能力上要比 128K 的 GPT-4 Turbo 更强,但实际结果显示,在需要回忆和准确理解上下文的能力上,Claude 2.1 Pro 还是远逊色于 GPT-4 Turbo。

OpenAI 开发者大会之后,网友 Greg Kamradt 曾对 GPT-4-128K 的上下文回忆能力进行了测试。通过使用 Paul Graham(美国著名程序员) 的 218 篇文章凑够了 128K 的文本量,他在这些文章的不同位置(从文章顶端 0% 到底部 100%)随机插入一个事实语句:“在阳光明媚的日子里,在多洛雷斯公园吃三明治是在旧金山的最佳活动。”

然后他让 GPT-4 Turbo 模型检索这个事实语句,并回答有关这个事实语句的相关问题,最后采用业界常用的 LangChain AI 评估方法对给出的答案进行评估。

绿色代表更高的检索准确度,红色则代表更低的检索准确度 图片来自:@LatentSpace2000

评估结果如上图,GPT-4 Turbo 可以在 73K token 长度内保持较高的记忆准确率。倘若信息位于文档开头,无论上下文有多长,它总能检索到。只有当需要回忆的信息位于文档的 10%~50% 区间时,GPT-4 Turbo 的准确率才开始下降。

作为对比,该网友还提前要到了 Claude 2.1 Pro 的内测资格,并同样做了“大海捞针”的测试。从评估的结果来看,在长达 20 万 token(大约 470 页)的文档中,和 GPT-4 Turbo 一样,Claude 2.1 Pro 文档前部的信息比后部的回忆效果差一些。

绿色代表更高的检索准确度,红色则代表更低的检索准确度

但 Claude 2.1 Pro 上下文长度效果较好的区间是在 24K 之前,远低于 GPT-4 Turbo 的 73K。超过 24K 后,Claude 2.1 Pro 记忆性能就开始明显下降,90K 后,效果变得更差,出错率更是大幅度上升。

可以看到的是,随着上下文长度的增加,GPT-4 Turbo 和 Claude 2.1 Pro 检测的准确度都在逐渐降低。尽管 Claude 2.1 Pro 的测试覆盖了更宽的上下文长度,但相比更实用的准确度,GPT-4 Turbo 还是 Claude 2.1 Pro 需要追赶的对象。

Claude 或许是免费版中最强的大模型之一。如果你是文字工作者,当 ChatGPT 崩溃,堪比 GPT-3.8 的 Claude 能够解决你的燃眉之急,甚至表现得要更好。

但个性化的 GPTs、轻松生图的 DALL·E 3,语音交流等功能依然是 ChatGPT 不可多得的护城河。在强大的 GPT-4 Turbo 面前,升级后的 Claude 2.1 Pro 版本也得败下阵来。

最后放上 Claude 的体验链接:https://claude.ai/login,若 ChatGPT 再次崩了,放轻松,起码你还有 Claude。

本文来自微信公众号:APPSO (ID:appsolution),作者:莫崇宇

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2023年11月24日
Next 2023年11月25日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日