OpenAI,困于“遥遥领先”

轰动全球的大型连续剧“奥特曼去哪儿”划上了句号,但OpenAI的烦心事并没有结束。

Sam Altman能在短时间内官复原职,离不开微软忙前忙后。今年以来,微软一直在帮助好兄弟做大做强。不仅追加投资了100亿美金,还大规模调用了微软研究院的人力,要求放下手头的基础科研项目,全力将GPT-4等基础大模型落地成产品,用OpenAI武装到牙齿[1]

但很多人不知道的是,今年9月,微软研究院负责人Peter Lee曾接到过一个秘密项目——打造OpenAI的替代品。

第一个“去OpenAI化”的,正是微软的首个大模型应用Bing Chat。

据The Information爆料,微软正尝试将原本集成在Bing当中的OpenAI大模型,逐步替换成自研版本。11月的Ignite开发者大会上,微软宣布Bing Chat更名为Copilot,如今市场定位与ChatGPT颇为相似——很难不让人多想。

全新的Copilot

不过,微软的初衷并不是觉得OpenAI的技术能力有瑕疵,也不是预见到了OpenAI管理层的分歧,真实原因有点让人哭笑不得:因为OpenAI的技术能力太强了。

开着兰博基尼送外卖

促使微软自研大模型的契机,是OpenAI的一次失败[3]

ChatGPT轰动全球之际,OpenAI的计算机科学家们正在忙于一个代号为Arrakis的项目,希望对标GPT-4打造一个稀疏模型(sparse model)

这是一种特殊的超大模型:处理任务时,模型只有特定部分会被激活。例如当用户需要生成一段摘要时,模型会自动激活最适合该工作的部分,不必每次都调动整个大模型。

相较于传统的大模型,稀疏模型拥有更快的响应速度和更高的准确性。更重要的是它可以大大降低推理的成本。

翻译成人话就是,杀鸡再也不用牛刀了——而这正是微软所看重的。

谷歌对稀疏模型优势的总结

舆论聊到大模型成本时,总爱谈论7、8位数的训练成本,以及天文数字的GPU开支。但对大多数科技公司而言,模型训练和数据中心建设只是一次性的资本开支,一咬牙并非接受不了。相比之下,日常运行所需的昂贵推理成本,才是阻止科技公司进一步深入的第一道门槛。

因为在通常情况下,大模型并不像互联网那般具备明显的规模效应。

用户的每一个查询都需要进行新的推理计算。这意味着使用产品的用户越多、越重度,科技公司的算力成本也会指数级上升。

此前,微软基于GPT-4改造了大模型应用GitHub Copilot,用于辅助程序员写代码,收费10美元/月。

据《华尔街日报》的爆料,由于昂贵的推理成本,GitHub Copilot人均每月亏20美金,重度用户甚至可以给微软带来每个月80美金的损失[5]

GitHub Copilot

大模型应用的入不敷出,才是推动微软自研大模型的首要原因。

OpenAI的大模型在技术上依旧遥遥领先,长期位于各大榜单的首位,但代价是昂贵的使用成本。

有AI研究员做过一笔测算,理论上GPT-3.5的API价格,几乎是开源模型Llama 2-70B推理成本的3-4倍,更别提全面升级后的GPT-4了[6]

然而除了代码生成、解决复杂数学难题等少数场景,大部分工作其实完全可以交由参数较小的版本和开源模型。

初创公司Summarize.tech就是个活生生的案例。它的业务是提供总结音视频内容的工具,拥有约20万月活用户,早期曾使用GPT-3.5来支持其服务。

后来,该企业试着将底层大模型更换成开源的Mistral-7B-Instruct,发现用户并没有感知到差异,但每月的推理成本却从2000美元降低至不到1000美元[7]

也就是说,OpenAI为客户无差别提供动力强劲的兰博基尼,但大部分客户的业务其实是送外卖——这构成了OpenAI的“遥遥领先难题”。

所以不光是微软,连Salesforce、Wix等OpenAI的早期大客户,也已经替换成更便宜的技术方案。

降低推理成本,让“开奥迪比雅迪更便宜”,成为了OpenAI必须要解决的课题,这才有了前文提到的稀疏模型项目Arrakis。

事实上,不光是OpenAI,谷歌也在从事相关研究,并且已经取得了进展。8月的Hot Chips大会上,谷歌首席科学家、原谷歌大脑负责人杰夫·迪恩更在演讲中提到,稀疏化会是未来十年最重要的趋势之一[8]

杰夫·迪恩还发表过稀疏模型的论文

正是遥遥领先带来的高成本让微软琢磨起了“自力更生”的可能性,OpenAI其实也注意到了这个问题:11月6日的开发者大会上,OpenAI推出了GPT-4 Turbo,一口气降价1/3,已低于Claude 2——即最大竞争对手Anthropic开发的闭源大模型。

OpenAI的“兰博基尼”虽然还不够便宜,至少比其他小轿车实惠了不少。

可惜11天之后,一场足以载入科技史的闹剧,正使得这一努力大打折扣。据外媒爆料,在奥特曼与OpenAI董事会谈判回归的那个周末,已有超过100个客户联系了友商Anthropic[10]

商业化的悖论

即便没有这场内乱,OpenAI的客户流失危机可能依然存在。

这要从OpenAI的模型与产品设计思路讲起。

不久前,OpenAI往开发者社群中投入了GPTs这颗重磅炸弹。用户可以利用自然语言来定制不同功能的聊天机器人。截止至奥特曼复职当天,用户已上传了19000个功能迥异的GPTs聊天机器人,平均日产1000+,活跃程度堪比一个大型社区[11]

功能迥异的GPTs

众所周知,GPT模型并不开源,而且还有“遥遥领先难题”。但对个人开发者和小型企业来说,OpenAI具备两个开源模型所无法匹敌的优势:

其一是开箱即用的低开发门槛。在海外论坛上,一些利用OpenAI基础模型搞开发的小型团队,会将自家产品形容为“wrappers(包装纸)”。因为GPT模型强悍的通用能力,他们有时只需要替模型开发一个UI,再找到适用场景,就能拿到订单。

开发者如果需要进一步微调模型,OpenAI同样提供了一项名为LoRA(低秩自适应)的轻量级模型微调技术。

简单来说,LoRA的大致原理是先将大模型“拆散”,再面向指定任务做适应性训练,进而提升大模型在该任务下的能力。LoRA主要着眼于调整模型内部结构,并不需要太多行业数据进行微调。

但在定制开源模型时,开发者有时会使用全量微调。虽然在特定任务上表现更好,但全量微调需要更新预训练大模型的每一个参数,对数据量要求极高。

相比之下,OpenAI模式显然对普通开发者更加友好。

LoRA原理示意图

其次,前文曾提到大模型并不具备规模效应,但这句话其实有一个前提——即计算请求充足的情况下。

测试显示,每批次发送给服务器的计算请求越少,对算力的利用效率会降低,进而会导致单次计算的平均成本直线上升[6]

OpenAI可以一次性将所有客户的数百万个计算请求一起捆绑发送,但个人开发者和中小企业却很难做到这一点,因为并没有那么多活跃用户。

简单来说就像送快递,同样从上海到北京,OpenAI客户多,可以一次送100件;其他模型就凑不出这么多了。

咨询公司Omdia的分析师曾评价称,OpenAI从规模效应中的获利,远远超过大多数在AWS或Azure上托管小型开源模型的初创企业[14]

所以,虽然“ChatGPT一更新就消灭一群小公司”的现象客观存在,但还是有不少开发者愿意赌一把。

PDF.ai的创始人Damon Chen就是直接受害者,PDF.ai的主要功能是让模型阅读PDF文件,结果10月底ChatGPT也更新了这项能力。但Damon Chen却非常淡然:“我们的使命不是成为另一家独角兽,几百万美金的年收入已经足够了。”

但对于富可敌国的大公司来说,OpenAI的这些优势全都成了劣势。

比如,OpenAI在轻量级开发上颇有优势,但随着企业不断深入场景,需要进一步定制时,很快会又一次面临“遥遥领先的难题”:

由于GPT-4过于复杂且庞大,深度定制需要耗费最低200万美金和数月的开发时间。相比之下,全量微调开源模型的成本多为数十万美元上下,两者明显不是一个量级。

另外,微软、Salesforce等大客户自己的计算请求就够多了,根本不需要和别人一起拼单降成本,这让OpenAI在成本端优势全无。即便是初创企业,随着用户不断增加,使用OpenAI模型的性价比也会降低。

前文提到拥有20万月活的初创公司Summarize.tech,就成功利用开源的Mistral-7B-Instruct降本50%以上。

要知道7B参数的小型开源模型还可以运行在“老古董”级的英伟达V100上——该GPU发布于2017年,甚至没进美国芯片出口管制名单的法眼。

Summarize.tech

从商业角度看,能够支撑公司营收的恰恰是财大气粗的大公司,如何抓住那些“野心不止数年收入百万美金”的客户,已是OpenAI必须面对的命题。

闪点事件

让OpenAI“面对商业化问题”听上去似乎有些奇怪,毕竟直到2023年初,跟赚钱相关的议题还远不在OpenAI的日程表上,更别提搞什么开发者大会了。

今年3月,OpenAI总裁布罗克曼(Greg Brockman)——也就是上周和奥特曼一起离职的大哥——接受了一次采访。他坦诚地说道,OpenAI并没有真正考虑过构建通用的工具或者垂直领域的大模型应用。虽然尝试过,但这并不符合OpenAI的DNA,他们的心也不在那里[17]

持续四天半的闹剧之后,Brockman也再度回归

这里的DNA,其实指的是一种纯粹理想主义、保护人类免受超级智能威胁的科学家文化。毕竟OpenAI的立身之本,很大程度上建立在2015年马斯克与奥特曼的“共同宣言”——AI更安全的道路将掌控在不受利润动机污染的研究机构手中”[18]

理想主义大旗的号召下,OpenAI成功招募到了以伊利亚(Ilya Sutskever)为首的顶尖科学家团队——尽管当时奥特曼提供给他们的薪资还不足谷歌一半。

让OpenAI开始转变的一个关键因素,恰恰是ChatGPT的发布。

最初,OpenAI领导并没有将ChatGPT视作一款商业化的产品,而是将其称为一次“低调的研究预览”,目的是收集普通人与人工智能交互的数据,为日后GPT-4的开发提供助力。换句话说,ChatGPT能火成这样,是OpenAI没有想到的。

出乎意料的爆红改变了一切,也促使奥特曼和布罗克曼转向了加速主义。

所谓加速主义,可以简单理解为对AGI的商业化抱有无限热情,准备大干快上跑步进入第四次工业革命。与之对应的则是安全主义,主张用谨慎的态度来发展AI,时刻衡量AI对人类的威胁。

一位匿名OpenAI员工在接受《大西洋月刊》采访时说道,“ChatGPT之后,收入和利润都有了明确的路径。你再也无法为‘理想主义研究实验室’的身份做辩护了。那里有客户正等着服务[20]。”

这种转变让OpenAI开始踏入一个陌生的领域——持续将研发成果转换成受欢迎的产品。

对一家曾以理想主义标榜的象牙塔来说,这项工作显然有些过于“接地气”了。比如技术领袖伊利亚就是个计算机科学家而非产品经理,之前在谷歌也多负责理论研究,产品落地的职责在杰夫·迪恩领导的谷歌大脑团队身上。

在ChatGPT发布前,OpenAI更像是几个财富自由的科学家和工程师组成的小作坊,但时过境迁,他们变成了一个正儿八经的商业机构。

过去一年,OpenAI新增了数百位新雇员,用于加速商业化。根据The Information的报道,OpenAI的员工总数很可能已经超过700人。就算不考虑赚钱,也得有方法应对运营成本——毕竟科学家也要还房贷啊。

短暂又剧烈的“奥特曼去哪儿”事件并没有解决这个问题,反而让它变得愈发尖锐:OpenAI到底是个什么组织?

在CNBC的一次采访里,马斯克曾这样形容由他亲手创办、后来又将他扫地出门的公司:“我们成立了一个组织来拯救亚马逊雨林,但后来它却做起了木材生意,砍伐了森林将其出售[18]。”

这种矛盾使得OpenAI困于遥遥领先,也催生了这场惊呆所有人下巴的闹剧。

今年早些时候,连线杂志的记者曾跟访了奥特曼一段时间,期间也曾反复提及这个问题,但奥特曼每次都坚称,“我们的使命没有改变”。但当信奉安全主义的伊利亚滑跪,以及奥特曼回归,显然OpenAI已经做出了它的选择。

参考资料

[1] How Microsoft is Trying to Lessen Its Addiction to OpenAI as AI Costs Soar,The Information

[2] Microsoft rebrands Bing Chat to Copilot, to better compete with ChatGPT,The Verge

[3] OpenAI Dropped Work on New ‘Arrakis’ AI Model in Rare Setback,The Information

[4] GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE,SemiAnalysis

[5] Big Tech Struggles to Turn AI Hype Into Profits,The Wall Street Journal

[6] Why GPT-3.5 is (mostly) cheaper than Llama 2,Aman

[7] OpenAI’s Corporate Sales Come Under Pressure From Microsoft as AI Customers Eye Cheaper Options,The Information

[8] THE NEXT 100X FOR AI HARDWARE PERFORMANCE WILL BE HARDER,Next Platform

[9] OpenAI’s ‘Extinction Event’ For Other AI Startups,The Information

[10] OpenAI’s Customers Consider Defecting to Anthropic, Microsoft, Google,The Information

[11] GPTs Hunter

[12] What it Takes to Make Open-Source AI Cheaper Than OpenAI,The Information

[13] 图解大模型微调系列之:大模型低秩适配器LoRA(原理篇),猛猿

[14] Open Source vs. Closed Models: The True Cost of Running AI,AI Business

[15] Why a New OpenAI Product Costs $2 Million,The Information

[16] “血色婚礼”后,生成式AI仍在第一幕,我思锅我在

[17] OpenAI President on Musk Criticism: ‘We Made a Mistake’,The Information

[18] What OpenAI Really Wants,Wired

[19] 深度学习革命,凯德·梅茨

[20] Inside the Chaos at OpenAI,The Atlantic

本文来自微信公众号:远川科技评论 (ID:kechuangych),作者:陈彬

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2023年11月29日
下一篇 2023年11月30日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日