900多名作者的谷歌Gemini技术报告,有哪些重点?

两周前,人们兴奋于谷歌提出的“原生多模态大模型”Gemini,其宣称超越。

Pro:是谷歌在成本和延迟方面进行性能优化的模型,可在各种任务中提供良好的性能,并表现出强大的推理性能和广泛的多模态能力。

Gemini。

评估结果如下图表所示:

下表。模型在一系列功能上表现出巨大的改进:

多模态

Gemini。

备受期待的谷歌 Gemini 技术报告完整版,今天终于出炉了。

两周前,人们兴奋于谷歌提出的“原生多模态大模型”Gemini,其宣称超越 GPT-4 的强大性能,以及对于图像、视频等领域的理解能力让人们似乎看到了未来。不过由于谷歌演示的 demo 涉嫌夸大效果,Gemini 又很快陷入了争议。

但作为生成式 AI 领域最近的重要进展,人们对于 Gemini 的期待越来越高,有团队很快进行研究并发布测试论文。今天发布的 64 页技术报告,或许可以为我们的许多疑惑进行更加直观的解释。

这篇技术报告《Gemini: A Family of Highly Capable Multimodal Models》作者包括 Jeff Dean、Oriol Vinyals、Koray Kavukcuoglu、Demis Hassabis 等一众谷歌研究大佬,另外还有谢尔盖·布林这样的公司联合创始人。

论文链接:https://arxiv.org/abs/2312.11805

另外,该文章的作者数量也夺人眼球 ——941 个人,搞得 arXiv 网页都有点卡:

一页显示不过来。

从文章第 35 页起,谷歌开始罗列所有“贡献者”,从 Team Leader 到主要贡献者,再到贡献者分门别类写到了第 45 页,看起来之前各路媒体说谷歌在 Gemini 上投入了大量工程师,的确是没说错。

谷歌表示,在每个任务方向上,人们对 Gemini 所做的贡献是同等重要的,名字按随机顺序列出。Gemini 是一项跨谷歌内部多团队的工作,成员来自 Google DeepMind、Google Research、Knowledge and Information、Core ML、Cloud、Labs 等部门。

此外还有提供了支持的团队和人(比如公司 CEO 桑达尔·皮查伊),以及没有列出的很多谷歌内部贡献者。

对此有人吐槽道,论文作者比解释技术写得还长,你这怕不是在水字数?

光是这些花费在这些工程师、科学家们身上的工资每年就有上亿美元。

在技术报告中,谷歌表示 Gemini 是一个多模态大模型体系,它在图像、音频、视频和文本理解方面表现出卓越的能力。Gemini 系列包括 Ultra、Pro 和 Nano 三个版本,适用于从复杂推理任务到移动设备的各种应用。

通过在大量基准的跑分表明,功能最强大的 Gemini Ultra 在 32 个基准中的 30 个中刷新了 SOTA(业内最佳)水平。谷歌特别指出,Gemini 是第一个在经过充分研究的考试基准 MMLU 上实现人类专家表现的模型。谷歌相信,Gemini 在跨模态推理和语言理解方面的突出能力将支持各种用例。

以下图所示的教育环境为例,老师画了一个滑雪者从斜坡上滑下的物理问题,学生试图进行解答。利用 Gemini 的多模态推理能力,该模型能够理解凌乱的笔迹,正确理解问题的表述,将问题和解决方案都转换为数学排版,识别学生在解决问题时出错的具体推理步骤,然后给出问题的正确解法。

图 1,笔记识别,解答物理问题。

Gemini 的推理能力展示了构建能解决更复杂多步骤问题的通用智能体的前景,比如谷歌基于 Gemini 提出了 AlphaCode 2。在移动设备上,Gemini Nano 在摘要、阅读理解、文本填充任务等任务中表现出色,也体现了推理、STEM、编码、多模态和多语言任务的能力。

在文章的技术解释部分中,谷歌概述了 Gemini 的模型架构、训练基础设施和训练数据集,对 Gemini 模型系列进行了详细评估,涵盖文本、代码、图像、音频和视频方面。谷歌讨论了模型审核与部署方法,最后也讨论了 Gemini 的更广泛影响、局限性及其潜在应用。

模型架构

Gemini 1.0 有三种尺寸 Ultra 、 Pro 以及 Nano ,如下所示:

  • Ultra:可以在各种高度复杂的任务中提供SOTA性能,包括推理和多模态任务。它还可以在TPU加速器上有效地进行大规模服务;

  • Pro:是谷歌在成本和延迟方面进行性能优化的模型,可在各种任务中提供良好的性能,并表现出强大的推理性能和广泛的多模态能力;

  • Nano:谷歌最高效的模型,专为在设备上运行而设计。谷歌训练了两个版本的 Nano,参数分别为 1.8B (Nano-1) 和 3.25B (Nano-2),分别针对低内存和高内存设备,采用 4 位量化进行部署,并提供一流的性能。

Gemini 的输入有多种形式,如文本、音频、图片、视频等,如下图2所示。值得一提的是,Gemini是原生多模态的。

Gemini 的视频理解能力是通过将视频编码为大上下文窗口中的帧序列来完成的。视频帧或图像可以自然地与文本或音频交织,作为模型输入的一部分。Gemini 模型可以处理可变的输入分辨率,以便将更多的计算花费在需要细粒度理解的任务上。 

此外,Gemini 可以直接从通用语音模型(USM)功能中摄取 16kHz 的音频信号。这使得模型能够捕获当音频被简单地映射到文本输入时通常会丢失的细微差别。

训练基础设施

谷歌使用 TPUv5e 和 TPUv4 训练 Gemini 模型,具体取决于模型的大小和配置。其中,训练 Gemini Ultra 使用跨多个数据中心的大量 TPUv4 加速器,相比于 PaLM-2,规模显著增加,带来了新的基础设施挑战。

增加加速器的数量会导致整个系统中硬件的平均故障间隔时间成比例地减少。因此,谷歌最大限度地减少了计划重新规划和抢占的比率,但实际上机器故障在如此大规模的硬件加速器中很常见。 

TPUv4 加速器部署在 4096 个芯片的“SuperPod”中,每个芯片连接到一个专用光开关,可以在大约 10 秒内将 4x4x4 芯片cube动态重新配置为任意 3D 环面拓扑。对于 Gemini Ultra,谷歌为每个超级容器保留少量cube,以实现热备用和滚动维护。

TPU 加速器主要通过高速芯片间互连进行通信,但对于 Gemini Ultra,谷歌使用其集群内和集群间网络在多个数据中心中组合 SuperPod。

使用定期检查持久集群存储权重的传统方法,在这种规模下维持高吞吐量是不可能的。因此谷歌为 Gemini 使用了模型状态的冗余内存副本,并且在任何计划外的硬件故障中,Gemini 可以直接从完整的模型副本中快速恢复。与 PaLM 和 PaLM-2 相比,尽管使用的训练资源要大得多,但恢复速度显著加快。

最终,最大规模训练 job 的整体吞吐量从 85% 增加到 97%。

Gemini 模型是在多模态和多语言数据集上进行训练的,预训练数据集使用来自网络文档、书籍和代码的数据,包括图像、音频和视频数据。谷歌使用了 SentencePiece tokenizer,并发现在整个训练语料库的大样本上训练 tokenizer 可以提高推断词汇量,从而提高模型性能。

此外,谷歌还使用启发式规则和基于模型的 tokenizer 对所有数据集应用质量过滤器,并执行安全过滤以删除有害内容。

评估

Gemini 模型本质上是多模态模型,跨文本、图像、音频和视频数据联合训练。一个悬而未决的问题是,这种联合训练是否能够产生一种在每个领域都具有强大能力的模型 —— 即使与针对单个领域进行定制的模型相比也是如此。谷歌进行了一系列的评估实验证明:Gemini 在广泛的文本、图像、音频和视频基准上实现了新的 SOTA 水平。 

文本

谷歌将 Gemini Pro 和 Gemini Ultra 与多个外部 LLM 以及谷歌之前的最佳模型 PaLM 2 进行了一系列基于文本的学术基准比较,涵盖推理、阅读理解、STEM 和编码。实验结果如下表 2 所示:

谷歌还通过在六种不同能力的 50 多个基准上进行评估,检查了 Gemini 模型的能力趋势,涵盖:

  • 开卷 / 闭卷检索和问答任务,要求“事实性”;

  • 长上下文摘要、检索和问答任务;

  • 数学 / 科学问题解决、定理证明和考试; 

  • 需要算术、科学和常识的“推理”任务;

  • 用多种语言进行翻译、摘要和推理的“多语言”任务。

评估结果如下图表所示:

下表 3 更深入地探讨了 Gemini 在特定的事实、编码、数学 / 科学和推理任务上的性能。其中,Gemini Nano-1 和 Gemini Nano-2 的模型大小分别为 1.8B 和 3.25B。

值得一提的是,经过指令调整的 Gemini Pro 模型在一系列功能上表现出巨大的改进:

多模态

Gemini 模型是从头开始以多模态为目标构建的。它表现出了独特的能力,可以将跨模态的功能(例如,从表格、图表或图形中提取信息和空间布局)与语言模型的强大推理能力(如先进的推理能力)无缝地结合起来。

如图 5 和图 12 中的示例所示,这些模型在识别输入内容中的细粒度细节、跨空间和时间聚合上下文,以及将这些功能应用于时间相关的视频序列方面也表现出强大的能力。

图 5、Gemini 的多模态推理功能可生成用于重新排列子图的 matplotlib 代码。

表 7、Gemini Ultra 在图像理解基准上的能力。

谷歌发现,Gemini Ultra 在各种图像理解基准测试中都是最先进的。

Gemini 模型还能够同时跨模态和理解多种语言。

表 9、多语言图像理解。

Gemini Ultra 在各种 few-shot 视频字幕任务以及 zero-shot 视频问答任务上取得了最先进的结果。

表 10、在选定的学术基准上跨任务和语言的 few-shot 视频理解。

图 6 显示了 one-shot 情况下的图像生成示例。

图 6、图像生成。在给出由图像和文本组成的提示的情况下,Gemini 可以输出与文本交错的多个图像。

有关语音理解能力,表 11 表明,无论是在英语还是多语言测试集上,Gemini Pro 模型在所有 ASR(语音识别)和 AST(自动语音翻译)任务中显著优于 USM 和 Whisper 模型。

表 11、ASR 和 AST 选定基准的语音评估结果。

安全性

谷歌表示,在 Gemini 模型的开发过程中遵循了结构化方法进行负责任的部署,以便识别、衡量和管理大模型的可预见社会影响,这与 Google 人工智能技术的先前版本一致。

结语

谷歌在技术报告中表示,目前有关 Gemini 大模型的各种测试和用例,可能只涉及了其潜力的很小一部分。谷歌期待更多公司在更多场景上使用新的模型。

Gemini 为谷歌开发一个大规模、模块化的系统,实现最大泛化能力的目标提供了坚实基础。

本文来自微信公众号:机器之心 (ID:almosthuman2014),作者:机器之心编辑部

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2023年12月21日
Next 2023年12月21日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日