万亿巨头们的无限游戏

英伟达成为新晋的科技巨头,除了用于AI加速的GPU芯片,它也在构建其人工智能的基础设施,还成为过去一年投资人工智能初创企业最多的公司。

生成式人工智能时代,能否出现在技术、产品和创新都能与科技巨头抗衡,而其社会影响力又大于科技巨头的企业,这是非常值得期待的。

如果AI最终让资源和技术向巨头们更加集中,它们将面对监管当局与社会的拷问,控制在少数巨头手里的超级人工智能,对经济增长与就业的好处在哪里。

苹果,微软,Alphabet(谷歌),亚马逊,英伟达,Meta,特斯拉(马斯克),这些公司之间有什么共同点?

是的,它们都是科技巨头(Big Tech)。它们的市值目前都在万亿美元以上,或者曾经达到过。其中的5家,每年研发支出达到了250亿美元以上。

科技巨头曾经是指那些通过互联网建立起强大平台经济的企业,拥有十亿用户级别的软件及应用。它们往往赢家通吃 (Winner takes all )

科技巨头的概念也在随着技术演变。它们实现了软硬件一体,除了软件,它们也设计和制造终端设备,包括PC、手机、可穿戴、AR/VR、传感器、机器人、智驾汽车,它们也正在渗入到制造业的流程中。

它们还建立起了强大的云计算和企业服务能力,包括芯片、超级计算机和超大规模的数据中心,为第四次技术革命提供最重要的基础设施。

它们已经开始全面竞争一种全新的能力,生成式AI。在深度学习领域的竞争,从2012年视觉计算取得突破时就已经开始,因为大模型的流行而加剧,但只有在ChatGPT发布之后,过去的一年,生成式AI大模型成为科技巨头之间“军备竞赛”的焦点,迅速成为巨头技术栈上标配的一层。它正在成为所有巨头的业务基础模型。

科技巨头的核心能力,越来越区别于其他非科技企业和非巨头企业。它们能把技术和应用端到端地垂直整合到一起,不断扩张业务范围,形成一种科技巨头所独有的、以计算和智能为核心的创新能力。它们都是全球化的企业。

这样看来,华为也是这样一家科技巨头,它也已经建立起了从芯片到软硬件应用的全栈技术能力,以计算和智能为核心展开业务范围。它在2022年的研发投入达到了240亿美元。但华为是其中几家巨头的挑战者。

巨头公司的研发投资覆盖了基础技术研究和具体产品的开发。除此之外,它们每年还把研发和投资的20%左右,投入企业内部IT系统、效率软件、先进的技术平台、以及数据中心等基础设施,并持续地提升员工技能,不断把那些复杂和重复的业务和流程进行自动化和简化。

巨头企业保持内部技术的先进性,是其创新和竞争力的一个重要来源。巨头用最先进技术围绕用户数据建立起了正向的反馈机制,形成了飞轮效应。

人工智能正在加快这一飞轮的运转,放大它们在各自领域的核心能力,也在生成新的能力。生成式AI更像是这些科技巨头为自己发明的新工具,一种放大器和加速器。

AI最早的受益者是科技巨头自己。英伟达从2012年起就开始为深度学习提供GPU,营造CUDA生态,10年之内把自己变成了科技巨头。巨头最早受益于AI的,都是其核心业务,如云计算和广告,目前是企业服务和生产力软件,接下来还有硬件和消费智能产品,以及新的“赢家通吃”的领域。

巨头的无限游戏

我们正处于当年个人电脑开始的同样时期。1980年代初,信息技术革命发轫于英特尔发明的CPU。乔布斯创办了苹果电脑,比尔盖茨创办了微软,近50年后,它们跨越了PC、互联网、移动、云计算,直到人工智能,至今是世界上市值最大的两家公司。

同样,2023年,AI开始真正大规模走向消费者。AI时代真正开启,人们称之为苹果时刻、人机交互的范式转移时刻,寻找这个时代的苹果和微软。

但是,科技巨头似乎从源头就控制着这一切。

通用人工智能最具颠覆性的两家初创企业,DeepMind和OpenAI,前者被谷歌收购,后者技术被微软买断和控制。

生成式人工智能,从训练最先进的大模型,如GPT-4、Gemini、Claude2,到向数亿用户部署和应用,多数都要依靠微软、亚马逊和谷歌这三家的云计算。英伟达成为新晋的科技巨头,除了用于AI加速的GPU芯片,它也在构建其人工智能的基础设施,还成为过去一年投资人工智能初创企业最多的公司。

它们控制了数据。用来训练生成式人工智能的自然语言数据、视觉数据、代码符号数据、知识图谱,包括合成数据,海量地来自并存储在这些巨头的业务、平台和基础设施中。更重要的是,大数据创造了对自动化和人工智能的需求。

生成式人工智能重新定义了大数据。由于人类已经开始掌握以大型语言模型(LLM)技术以产生智能,网络上的公开数据、企业数据、个人数据、自然界中的数据,以及人工合成的数据,都可以成为训练智能的原料。科技巨头本身拥有巨大的数据库,它们还在获得更多和更好的数据。它们建立起了联盟,为用于人工智能训练的数据建立标准。它们可以合成数据,成为新的模型的训练的来源。目前许多人工智能的研究和模型训练,开始用GPT-4等先进大模型生成或者标注的数据来训练。除了公开数据,OpenAI还开始与各机构展开私有数据的合作。

它们掌握了算力。巨头们已经在全球各地建立了数据中心,拥有最先进的AI加速算力;或者已经囤积的AI芯片,已经超过了世界上许多中等国家所拥有的数量。它们除了用来实现自身业务的AI化之外,还去进行科学探索:AI用于创新药研发、医疗服务、芯片设计、材料发现、能源转型和应对气候变化。

巨头所拥有的强大的算力,实际上是人工智能所引领的第四次工业革命的基础设施。微软以后每年将在数据中心投入500亿美元,包括自行研发的芯片的支出,这已经相当于一个科技大国的AI基础设施的投入。亚马逊和谷歌,都在为数据中心更高的计算效率研发芯片。苹果研发的手机和个人电脑的芯片,已经超过了专业的芯片设计公司。

美国及许多国家的政府、大学、研究机构,会日益依赖这些巨头的算力基础设施。发展人工智能成为许多国家优先考虑的事项,这些巨头的云中心已经遍布世界各地,它们可以在这些数据中心的基础上,轻松地与当地政府合作。

拥有数据和算力,加上资本的力量,这些巨头可以吸引世界上最好的人才。它们建立起了最先进的研究部门,吸引了世界上最优秀的图灵奖获得者和理工科博士,也掌握了最好的算法——Transformer论文就出自谷歌,而谷歌一直是最高质量AI论文的来源地。Meta也建立了超级算力集群,研发出最流行的开源机器学习库PyTorch,不仅支持自已在社交媒体上的推荐算法,支持它建立起最大的线上广告系统,而且推出的大模型Llama引领了开源大模型潮流。

这些巨头公司还有一个重要特点,都是从初创企业成长起来的,除了苹果公司之外,其创始人依然在管理企业,或者对企业的方向与战略发挥着影响力,其CEO依然能让日益庞大的企业保持敏捷。企业体内部活跃着技术基因,工程师思维主导了企业文化。

巨头不仅砸下巨资进行前沿技术开发和新产品研发,打造先进的企业IT系统和技术平台,它们还投资、收购初创企业。2023年,对生成式AI的投资,微软、谷歌、亚马逊、英伟达等几家大型科技巨头对大模型初创企业的投资,金额上远远超过了独立的风险投资机构。

它们投资的战略性也越来越强。巨头投资大模型初创公司,其中相当大的金额就是算力信用的投入。例如微软对OpenAI投资130亿美元,其中很大一部分是Azure云计算;亚马逊以40亿美元投资大模型初创公司Anthropic,其中多数是AWS的算力信用。而巨头们自研的AI芯片,也将用于这些大模型的训练和推理功能。谷歌则更早建立起这样一个共生链条。硅谷人称“云洗钱”。但目前食物链的顶端仍然是英伟达。

巨头们不仅控制了最强大的闭源大模型,而且控制了最流行的开源大模型,如Meta推出的Llama,微软研发的Phi系列的小型开源模型等。Google DeepMind还能结合最强的强化学习模型进行科学发现。 

这些企业还拥有全球化的优势,它们的用户、业务、供应链和数据中心遍布世界各地。美国巨头与中国巨头的国际竞争主要在东南亚,AI的兴起,让两国巨头在社交、视频、电商、云计算的竞争愈发激烈。

巨头准备继续通吃

由屠龙少年成长为巨龙,它们中间历史最长的苹果,已经近50年。时间最短的如Meta,已经近20年。移动互联时代,十年左右时间,就可以从初创企业长出一家科技巨头。在生成式AI的技术浪潮中,会出现颠覆性的初创企业,以更快的速度成长为新的科技巨头吗?

目前被人最看好的是OpenAI,2015年成立,8年之后估值已经在900亿美元左右。它拥有独特的企业架构,可盈利公司已经跻身估值最高的非上市企业之列,但非盈利公司拥有盈利公司。从OpenAI的“董事会政变”事件中可以看出,微软目前通过技术使用、云计算、投资等方式,一段时期以来左右着OpenAI的可盈利部分。OpenAI的新董事会组建仍然没有完成,其新一轮融资寻求估值为900亿美元,新的股东结构和董事会组成,也会对OpenAI未来的发展产生影响。

OpenAI最初设立为一家非盈利公司,其目的就是不成为另一家硅谷的Big Tech。它在利用资本,但最终不受资本控制,而是由一个捍卫AGI for Humanity使命的非盈利董事会行使“监护权”。值得注意的是,OpenAI的竞争对手Anthropic也设立了带有社会影响力色彩的治理结构。马斯克创办的xAI也注册为一家赢利性共益企业(for-profit benefit corporation)

生成式人工智能时代,能否出现在技术、产品和创新都能与科技巨头抗衡,而其社会影响力又大于科技巨头的企业,这是非常值得期待的。这需要在新的技术条件下的企业治理结构的创新,在社会影响力与股东价值之间取得平衡。从目前来看,硅谷的科技巨头和风险资本,也乐意投资这一类颇具技术颠覆性的企业。

人们开始担心已经赢得IT和互联网竞争的这几家科技巨头,最终将赢得这场通用人工智能的竞争,而初创公司的成长空间已经非常有限。

颠覆性创新往往发生在初创公司。大公司并不缺乏好的创意,好的论文和专利,但一些研究表明,在技术采纳和应用方面,与初创公司相比,却效率较低。谷歌在与OpenAI的竞争中,充分体现出这一点。谷歌是全球高质量AI论文产出最多的地方,包括Transformer论文,但最终用Transformer做出最好模型的,却是OpenAI。

初创企业的生态富有活力,会在多个点上快速创新。大企业的R&D团队与产品团队之间的割裂是其致命弱点。而优秀的AI企业,研发与产品团队总是一体的,所以能否做出产品,很快就会得出结果。而大企业这一过程比较迟缓,过于担心失败,或者在推向市场时,顾虑较多。

但科技巨头把手中掌握的最先进的基础大模型,与其本来就已经主导市场的应用结合起来,会轻易碾压做同类应用的初创AI企业,如在SaaS软件领域。行业巨头在生成式AI方面的投入转型也非常快,开源更让许多创新变得没有必要。因此,初创企业的生态位,很多会来自开源模型小型化过程,大模型的基础能力与垂直领域结合的部位,行业深度中蕴藏的数据资源,以及AI与硬件结合的产品与供应链能力。

如果AI最终让资源和技术向巨头们更加集中,它们将面对监管当局与社会的拷问,控制在少数巨头手里的超级人工智能,对经济增长与就业的好处在哪里?

科技巨头们坚持认为,它们提供了创业和创新的平台,如互联网平台和云计算平台等,还有大量的开源工具,降低了创业门槛,几个人就可以创办一家企业,目前已经开始出现十个人的团队就能创办一家独角兽企业。科技巨头也是风险资本的一个重要来源,它们对初创企业的收购,是风险资本和创始人团队可以退出的机会,其作用已经相当于上市IPO。而退出往往带来丰厚的回报,这些资金中的大多数,又重新回到风险资本市场上去。科技巨头的资本力量,在创新生态中扮演日益重要的角色。

微软CEO纳德拉认为,这一轮AI带来的革命,不同于移动。移动带来消费的繁荣,而AI是创意者和建造者(builder)的效率神器,它将显著提升劳动生产率。英伟达的CEO黄仁勋认为,企业提高生产力,就会雇佣更多的人,把企业做得更大,或者进入更多的领域。这样企业就会发展下去。但人们也会想起他的另一句话:买得越多,省得越多。

DeepMind创始人哈萨比斯认为,通用人工智能正在引发一场科学的范式革命,可以用来解决科学难题,改变科学发现的方式。OpenAI创始人奥特曼相信通用人工智能将会实现生产力革命的“奇点”,未来的问题并不是社会财富的匮乏,而是如何分配已经极大丰裕了的社会财富。技术理想主义者则想到用技术好的一面对付技术不好的一面。OpenAI首席科学家和联合创始人苏茨克沃正在研究超级对齐的技术,内置于下一代超级智能之中。

在不同的体制内,人工智能可能释放生产力和破坏力的可能性、可控性、可控方式,将会有不同的表现。李飞飞所说的硅谷的bro culture 及其所推动的技术加速主义,以及巨头可能掌握超级人工智能,已经引发越来越多的焦虑。而大国在AI领域的竞争,让这种加速无法放缓。国内监管、国际合作、以及中国与美国之间建立起人工智能的对话机制,成为目前试图让AI风险可控的初级框架。

美国游戏公司Epic在一起反垄断官司中初步胜诉了谷歌;英伟达对GPU供应的控制,包括英伟达在供应链等环节采取的一些排挤竞争对手的做法,正在引发一些国家的关注。

技术从本质上来说是加速发展的。颠覆性的技术,只有一种增长方式,即指数型增长。但这种不断加速的自动驾驶,仍然需要减速装置。

巨头会继续通吃吗?

本文来自微信公众号:未尽研究 (ID:Weijin_Research),作者:未尽研究

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2023年12月27日
下一篇 2023年12月28日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日