2024生成式AI十大展望

终端设备加载AI模型,推动换代升级

小型化的大模型可以加载到笔记本电脑和手机等终端设备上,用户不仅可以更快捷地生成内容,而且可以利用自己本地的数据和知识进行检索生成,建立起定制化的智能体,更快捷地进行推理,也保护了数据安全和个人隐私。一些开源模型及AI应用,因为无法建立起商业模式将面临生存危机

绝大多数初创企业的开源模型,目前还无法在提供推理服务、授权、训练和部署模型方面建立起用户基础。

2024年,优化训练和部署大模型仍然非常重要,大模型的生态加速形成,应用开始在一些领域大规模展开,主要表现在如下十个领域:

1. 智能体作为任务助理进入更多应用场景和业务流程

智能体能有一定的主动性,能帮助完成任务,而不仅仅是问答。在感知环境后,通过其大脑(大型语言模型),调动其他的程序、应用、知识,甚至自己编程,规划和执行更复杂的任务。有了智能体,许多人可以用经验和专业知识,通过自然语言而不限于编程代码去写软件。

2. 操作系统集成下一代大模型,成为下一代操作系统

大型语言模型日益操作系统化,AI芯片为它设计,PC和手机的操作系统为它升级,AI应用成为它的下游,上下文管理类似于操作系统的内存。微软将推出Windows 12操作系统,在PC上与下一代大模型、Copilot深度集成。在移动设备上部署的模型,也与iOS、Android操作系统紧密结合,实现AI功能和建立AI应用商店。

3. 生成式AI制作的影视剧大量出现,冲击影视行业

图像和视频是生成式AI迭代最快的领域之一,GPT-4V等多模态大模型的推出,基于扩散模型的Dall-E 3、Midjourney和Stable Diffusion的功能不断增强,LCM-LoRA等技术达到了实时生成图像和视频的效果,对影视、音乐、游戏等内容娱乐行业的影响是颠覆性的。这方面的应用也是巨头目前还染指不多的领域。2024年将大量出现由生成式AI产生的影视剧,创作者、用户以及角色之间将会出现崭新的交互方式。

4. 人形机器人开始量产,自学习与环境互动能力进一步强化

在已有的机器人技术之上,多模态和具身智能的大模型,不断展示出惊艳的效果。大型语言模型的推理和规划能力,与视觉模型结合,可以通过获取周围环境数据,学习人类用手脚完成任务。2024年人形机器人开始量产,开始在工作场景中进化迭代人类的灵活性。

5. 终端设备加载AI模型,推动换代升级

小型化的大模型可以加载到笔记本电脑和手机等终端设备上,用户不仅可以更快捷地生成内容,而且可以利用自己本地的数据和知识进行检索生成,建立起定制化的智能体,更快捷地进行推理,也保护了数据安全和个人隐私。AI设备的主流硬件规格将包括内置7-10B LLM模型、40-50 TOPS AI算力、10-20 token/s以上推理速度、8-16GB以上DRAM等。

6. 下一代闭源大模型推出,出现胜任人类水平的AGI“火花”,但规模边际效应递减

OpenAI与微软将推出GPT-5,谷歌将推出Gemini Ultra,亚马逊也在训练数万亿参数的大模型。下一代大模型将是多模态的、使用更多合成数据的、混合专家系统的,会消除一些幻觉、增加上下文长度、信息更加准确和及时、基础数学水平有所提升等等。


更多更好的数据、更强的算力、更顺的搜索,依然是产生智能的根本因素。加上RAG(检索增强生成)补充非参数化的知识,闭源大模型会应用于更多的场景。

7. 数据来源的深度和广度进一步开拓、进一步规范,更多合成数据与自然数据结合用于大模型训练

数据决定了泛化的边界。自然语言数据,以及直接从现实世界事件或对象中收集得到的数据,已经无法满足下一代大模型的训练的胃口。在专业领域和垂直场景,非公开的数据将会发挥更大的价值,并且与大模型服务商建立新型商业合作关系。

大模型训练、自动驾驶、机器人、图像生成、模拟仿真等,都在大量使用合成数据的同时生成新的数据。越来越多的数据标注也由AI来完成。但是,只使用合成数据可能会造成数据多样性不足和自循环训练的问题。2024年将会看到AI企业寻求合法获取更多非公开数据,以及使用更多的混合数据。

8. 苹果真正入局,力争复现AI“iPhone时刻”

2023年被称为大模型之年,苹果表面上在作壁上观,但实际上在芯片及软硬件方面的研发一直在加大力度,只做不说。2024年苹果将把Vison Pro推向市场;PC和手机加载大模型,苹果是其中最重要的玩家;为了建立AI应用生态,操作系统封闭的苹果拥抱开源模型。苹果被广泛期待能给消费市场带来更好的AI产品体验。

9. 一些开源模型及AI应用,因为无法建立起商业模式将面临生存危机

绝大多数初创企业的开源模型,目前还无法在提供推理服务、授权、训练和部署模型方面建立起用户基础;消费类模型+应用的初创企业,在激烈的竞争中多数将遭淘汰;纯应用类的初创企业,许多将遭到巨头碾压或者很快在更新的开源技术迅速推广中出局。快速获取用户并且在反馈中建立起数据飞轮的企业将赢得生存。而能结合起应用场景、行业深度和垂直数据来源的企业,将能保护好自己。

10. 小模型结合软硬件应用,新物种涌现

2023年是大模型之年,2024年也将是“小”模型之年。更多几十亿到上百亿参数的小模型,通过模型架构、算法、训练和精调的创新,以及结合外部检索,性能可以叫板百亿参数大模型,甚至追平GPT-3.5(1750亿参数)

许多开源模型来自中国、欧洲、韩国、甚至中东等地,以更快的速度推广到各行各业。小模型尤其适合下载到设备上,在许多功能上可以替代从云上提供的大模型服务。小模型+终端设备是2024年的重要看点。

本文来自微信公众号:未尽研究 (ID:Weijin_Research),作者:未尽研究

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2023年12月29日
Next 2023年12月29日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日