“GPT-4变傻”,不只是OpenAI的苦恼

eLLM训练数据收集日期之前和之后发布的数据集,对零样本(蓝色)和少样本(绿色)任务的准确率对比

也就是说,大模型在它们之前“见过”的任务上表现优秀,在新任务上则相对拉垮。

最终结论

在所有实验过后,论文给出如下关键结论:

由于任务污染,闭源模型在零样本或少样本评估中的性能表现被夸大了,特别是那些经过人类反馈的强化学习(RLHF)或指令微调的模型。

ChatGPT发布一年多,已经在全世界累积了超过1.8亿用户。而随着越来越多的人开始频繁使用它,近几个月关于GPT-4在“变笨”“变懒”的说法不绝于耳。

大家发现这个昔日大聪明在回答提问时逐渐失去了最初的理解力和准确性,时不时给出“驴唇不对马嘴”的答案,或是干脆摆烂、拒绝回答。

对于GPT-4降智的原因,用户们有许多自己的猜测。而最近,来自加州大学圣克鲁兹分校的一篇论文,给出了学术界的最新解释。

“我们发现,在LLM训练数据创建日期之前发布的数据集上,LLM的表现出奇地好于之后的数据集。”

eLLM训练数据收集日期之前和之后发布的数据集,对零样本(蓝色)和少样本(绿色)任务的准确率对比

也就是说,大模型在它们之前“见过”的任务上表现优秀,在新任务上则相对拉垮。这更像是一种检索的模拟智能方法,回答问题全靠记,而非纯粹基于学习理解能力。

因此论文认为,许多大模型在处理早期数据时展现出的优异表现,实际上是受到了“任务污染”的影响。

我们知道,大语言模型之所以强大,是因为在各种零样本和少样本任务中表现出色,显示出处理复杂和多样化问题的灵活性。

而“任务污染”就是一种对零样本或少样本评估方法的污染,指在预训练数据中已包含了任务训练示例——你以为GPT-4初次回答就这么得心应手?No!其实它在训练过程中就已经“见过”这些数据了。

评估的模型与数据集

由于封闭模型不会公开训练数据,开放模型也仅提供了数据源,爬取网站去获取数据并非易事,所以想简单验证是困难的。

为了实测任务污染的范围,论文中共评估了12种不同的模型,包括5个GPT-3系列封闭模型和Fairseq MoE、Bloom、LLaMA等7个开放模型,并列出训练集创建和模型发布日期。

在数据集上则划分为两类:2021年之前和2021年之后发布的数据集。以此来对比新老数据集之间的零样本或少样本任务性能差异。

四种测量方法

基于以上样本,研究人员采用了四种方法来衡量大模型的任务污染范围。

1. 训练数据检查:直接搜索训练数据以找到任务训练示例。

发现经过微调的Llama模型Alpaca和Vicuna,在训练中加入少量任务示例后,对比原版Llama性能有所提升。

2. 任务示例提取:从现有模型中提取任务示例。

具体方法是通过提示词指令,让模型生成训练示例。由于在零样本或少样本评估中,模型本不应该接受任何任务示例训练,所以只要LLM能够根据提示生成训练示例,就是任务污染的证据。

结果发现,从GPT-3第一代davinci-001到后来的3.5-T,代表可以生成训练示例的红色X越来越多了,证明任务污染越发严重。

3. 成员身份推断:仅适用于生成任务,核心是检查模型为输入示例生成的内容是否与原始数据集完全相同。如果一致,就可以认定这个示例是LLM训练数据的成员。

因为如果在开放式生成任务中出现这种精准匹配,那模型无异于具备了预知能力,能准确复现数据集中的具体措辞,表现可以说是“天秀”了,这就强烈暗示了模型在训练时已经学习过这些内容。

结果显示在GPT-3系列和最近开源的大模型中,这种生成内容与原始数据完全相同的情况普遍存在,且污染程度随时间呈上升趋势。

4. 时间序列分析:对于已知训练数据收集时间的模型,测量其在已知发布日期的数据集上的性能,并使用时间序列证据检查污染的证据。

通过对所有数据集和LLM进行全球性的时间序列分析,发现对于在LLM发布之前收集的数据集(左侧),无论是零样本还是少样本任务中,击败多数基线的可能性都远远更大。

最终结论

在所有实验过后,论文给出如下关键结论:

  • 由于任务污染,闭源模型在零样本或少样本评估中的性能表现被夸大了,特别是那些经过人类反馈的强化学习(RLHF)或指令微调的模型。由于污染程度仍然未知,我们需要谨慎对待。

  • 在实验中,对于没有展示出污染可能性的分类任务,大模型在零样本和少样本设置里很少显示出相对多数基线在统计学意义上的显著性改进。

  • 随着时间推移,GPT-3系列模型在许多下游任务的零样本或少样本性能上的提升很可能是任务污染造成的。

  • 即使是开源的LLM,出于多种原因,检查训练数据的任务污染也可能是困难的。

  • 鼓励公开训练数据集,以便更容易诊断污染问题。

GPT“变笨”不孤单,所有大模型殊途同归?

读过论文后,许多网友也悲观地表示:降智没准儿是目前所有大模型的共同命运。

对于没有持续学习能力的机器学习模型来说,其权重在训练后被冻结,但输入分布却不断漂移。近两亿用户五花八门的新问题日夜不间断,如果模型不能持续适应这种变化,其性能就会逐步退化。

就比如基于大模型的编程工具,也会随着编程语言的不断更新而降级。

而持续重新训练这些模型的成本很高,人们迟早会放弃这种效率低下的方法。就目前的LLM来说,很难构建可以在不严重干扰过去知识的情况下,连续适应新知识的机器学习模型。

有网友认为:“围绕人工智能的所有炒作大多是基于这样一个假设:人工智能将会越来越好。但按照这些大型语言模型的设计方式,实现通用人工智能几乎是不可能的。在特定场景下的小众用例是这项技术的最佳使用方式。”

而持续学习,恰恰是生物神经网络的优势。由于生物网络具有强大的泛化能力,学习不同的任务可以进一步增强系统的性能,从一个任务中获得的知识有助于提升整个学习过程的效率——这种现象也称为元学习

“从本质上讲,你解决的问题越多,就会变得越好,而大模型虽然每天被数以百万计的问题所触发,它们并不会自动地在这些任务上变得更加出色,因为它们的学习能力被冻结在了某一时刻。”

不过,一个有些矛盾的现实是,现在的人们越来越依赖于AI生成的内容,用退化中的大模型提供的答案去解决生活中的实际问题。未来大模型爬到的数据,将会越来越多是它自己创造的东西,而不是来自人脑。

AI用AI的产出去自我训练,最终结果又会走向何方呢?如果不着手从根本上解决数据污染和持续学习能力的问题,未来的世界会和大模型一起变笨吗?

参考资料(原文地址):https://arxiv.org/abs/2312.16337

本文来自微信公众号:硅星人Pro(ID:Si-Planet),作者:Jessica

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年1月3日
Next 2024年1月3日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日