OpenAI翁丽莲的Agent公式,一定是正确的吗?

使用器则是提供用户和Agent交互的界面,在这里,用户可以和Agent对话,让Agent获取信息,从而进一步执行任务。

所有关注Agent的人,几乎都见过OpenAI华人科学家翁丽莲给出的Agent配方:

Agent=大模型+记忆+主动规划+工具使用

曾几何时,周健也把这个Agent配方奉为圭臬,但随着澜码在AI。

2024年了,被寄予厚望的AI Agent,到底是谁在用啊?!

它被视作通向AGI最有可能的路径之一,国内外公司都研究得火热,虽然似乎一切只是“押注”,但据我们所知,有不少toB领域已经喜提Agent了。

为什么是toB领域先用上?量子位询问了一位创业者,他所创立的AI Agent公司正在为toB领域的许多场景提供服务。

AI Agent可以被视作管理者跟基础员工、专家跟基础员工,员工与员工之间的连接器,能够填充企业想做数字化转型时,所面临的人和系统之间的空间。

同时他也提到,受目前技术所限,AI Agent不仅需要和一些传统技术,比如搜索规则引擎、知识图谱等进行组合。

更重要的是,Agent必须要知道自己在什么样的环境、什么样的场景下能够起作用。

恰巧,这位创业者——澜码科技创始人兼CEO周健,刚刚在上海正式发布了团队自主研发的AI Agent平台AskXBOT

我们决定以这个平台为一个案例,来个顺藤摸瓜,好好探一探Agent现在的进展。

一、Agent平台AskXBOT

澜码AskXBOT的自我定义,是一个AI Agent平台。

再详细展开一点,AskXBOT是基于大语言模型的Agent与工作流设计、开发、使用、管理、知识沉淀的一站式平台。

从整体结构来看,AskXBOT的设计并不繁琐,它主要由四个部分组成,分别是设计器、使用器、管理平台以及知识中心,为企业提供文档检索、AI调用、数据查询、智能编程等基础能力。

设计器用于创建和管理AI Agent。在这里,用户可以通过拖、拉、拽的无代码方式,设计和配置所需的AI Agent的模版,即使是没有技术背景,不会写代码的用户,也能轻松创建符合要求的Agent。

使用器则是提供用户和Agent交互的界面,在这里,用户可以和Agent对话,让Agent获取信息,从而进一步执行任务。

顾名思义,管理平台的主要功能是提供监管工具,包括权限控制、性能监控、日志分析等,用这些功能确保Agent的运行安全、稳定,并在用户反馈的基础上持续优化。

而用来沉淀和组织知识资产的知识中心,被澜码科技视为核心差异化模块。专家可以把知识和经验输入知识中心,被Agent学习后使用,以提供更准确的服务和响应。

实际工作中,专家用户的数据分析流程步骤和分析都非常丰富,理论上而言,专家可以把分析过程数据保存下来,做一个SOP(标准作业程序)

那么,其他所有的中级或初级的业务人员,在不用对专家核心知识死记硬背的时候,就能把相应的标准操作分析过程重复一遍。

“任何一个专家,一天也只能提供24小时的智力和劳动力,不可能无限扩张。”周健举了个非常容易理解的例子,那就是现在用大模型能力,利用Agent,只要加算力,专家的经验知识就能够被复制。

这么来算的话,如果有30块显卡,一个专家的能力就能提供720小时不间断的服务。

于是就能理解周健坚信的,“如果没有专家把知识数字化下来, 那么AI Agent的落地会有很大的困难”。

而为了让Agent更好地落地,丝滑运用到各行各业,澜码团队提出了三步走的AI Agent构建法则

第一步,专家知识数字化;

第二步,基于CUI(对话式用户交互界面)的柔性交互;

第三步,领域知识的循环沉淀。

2023年被普遍认为是大模型元年,而刚刚开始的2024年,则期望能大幅度拉开Agent发展的序幕。

周健表示,实际上澜码现在的设计思路,就是希望能够实现把Agent本身当成是一种生产力。

目前,AskXBOT已经有教育、人力资源、银行、国央企等许多合作客户。

拿人力猎头行业为例,北京人力华明科技公司、CGL等都是澜码AskXBOT的使用者。

在与CGL的合作中,澜码在其原有的猎头顾问系统中做了一个Copilot,让顾问不但能够高效地筛选、联系候选人,还能做一些原本不能完成的事情。

CGL高级副总裁郭雁冰表示,在实操中,专家作用远远超过数据,所以必须在专家知识上下功夫,做出能够模拟专家行为的Agent。

周健也希望能在下一个版本,让Agent拥有初步拥有对人才进行选、育、用、留的功能。

二、“Agent的落地速度比想象中更慢”

“让Agent有选、育、用、留功能,我们离可用技术实现这个阶段还有多远?”

  “两年时间吧。”

打破砂锅问到底,我们终于知道了“2年”这个数是怎么被估算出来的。

周健的判断标准首先来自OpenAI。OpenAI在GPT-4问世时曾经提过,如果两年内有企业做AGI能做得比它强,它就会投降,并把知道的所有的方法告诉赢家。

憧憬一下,如果OpenAI突然祭出GPT-5,那时候在它基础上搭建一个AI Agent,是多么爽的一件事(doge)

言归正传,现在离OpenAI的两年之约已经过去了一年,而周健自己判断2024年不管国内还是硅谷,都是AI大模型落地的元年,再往后一年的2025年,因为有落地案例,看到友商或者其他赛道有人已经落地,并且通过AI竞争大大增收,所以其他厂商肯定会跟进。

“这样的环境,再叠加GPT-5,所以我认为2025年肯定爆发,可能能真的用起来了。”周健笑道。

听起来,周健对未来预期的一切颇有底气,但是当话锋从未来两年转回过去一年时,他的态度是这样的——

现在年底往前看,大家落地的程度是比我年初想象中的判断要慢。

2023年3月,差不多是周健刚刚创业的时间,OpenAI发布ChatGPT Plugin,愁得他一宿没睡,满脑子都是“vocal,我要做的事情GPT做了怎么办?”

但是时间来到11月份,GPTs亮相的时候,周健自称这时候心态是了然于胸的、不慌不忙的。

原因只有一个,就是拜读3月轰动一时的论文《Sparks of Arti cial General Intelligence: Early experiments with GPT-4》后,周健当时的判断是GPT-4能够通用写50行到100行代码,“这其实是很可怕的,因为一个程序员一天大概也就写100行代码,那么GPT-4就能够代替一个程序员一天的工作量。”

基于这个设定,当时的周健很激进地认为,各个软件应该能够立刻马上原地被AI赋能,2023年年内就会开启淘汰赛,自己和团队的机会在比赛刚开始时就被大模型横扫了。

然而,后期团队与办公软件的合作过程,越做越让周健发现了一些不对劲:

通用写50行到100行代码这个预估,一下子把我忽悠瘸了。后面再认真仔细看GPT-4的论文,其实它大概也只能写2~3行代码,差距有十倍。

如果能力最强的GPT-4能写50~100行代码,那人类可能不剩下啥机会了。

但如果它只能写3、5行代码,你还基于它去做计划,那能做的任务决策的复杂度是十分受限的。

在正确看到真人程序员和GPT-4的差距,并且对算力有正确的认知后,澜码提供的私有化部署服务,就逐渐转变为小模型、大模型协同,加上作为入口的Root,把任务拆解出来,用不同的算力、调用不同的模型来解决这个问题。

三、翁丽莲的Agent公式是正确的吗?

所有关注Agent的人,几乎都见过OpenAI华人科学家翁丽莲给出的Agent配方:

Agent=大模型+记忆+主动规划+工具使用

曾几何时,周健也把这个Agent配方奉为圭臬,但随着澜码在AI Agent领域的实践增加,他有了略带不同的思考。

“现在大家一直在讲的具身智能、AI Agent、未来AGI,都是有能力和实际环境进行交互的。”周健向我们阐述了他的新观点新看法,他越来越觉得,Agent最重要的能力是和环境的互动能力

当然了,工具使用可能还好,主动规划和常识记忆仍然是核心点,但最具有差异的点,可能是在于Agent能否与环境交互(interaction with environment),在于AI有没有探索环境的能力。

周健表达自己的观点,“如果它对环境没有感知,我觉得就不能叫Agent”。反过来说,能意识到环境是什么样,有哪些可被调用的工具,能去发现、去探索,这个能力很重要。

从这个角度来看,翁丽莲给出的配方,在周健心中更像是“现阶段妥协于技术限制的Agent”。

在周健这位AI Agent践行者眼中,是需要有一个Master Agent进行任务分发——当然,前提一定是对环境有感知,才能进行接下来的探索。

如果要到人机融身、人机融合或者说人机共生的地步,它(Agent)一定是需要自己能够感知环境的。

  再视这个环境的大小,可以慢慢提升能力,最后回到Yann LeCun提到的世界模型。

当然了,比较遗憾的是,上述想法是周健和澜码团队近期才逐步琢磨出来的一个新的探究中心,在AskXBOT中并没有相应的设置和体现。

不过2024就在面前,在Agent的当打之年,Agent本身除了团队、数量节节攀升以外,或许能力也能涌现一波、突破一波?

本文来自微信公众号:量子位 (ID:QbitAI),作者:衡宇

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年1月7日
Next 2024年1月7日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日