7万亿美元的芯片融资计划,Altman在害怕什么?

一、无限的算力会带来真正的人工智能

上周,OpenAI。

社交媒体。来源:twitter.com

换句话说,他认为唯一阻碍超级人工智能的是服务器短缺,而实现超级人工智能,甚至可以帮助我们移民火星或解决全球变暖问题。

利用“缩放定律”训练大模型还隐含着一个副作用:强行使用更大、更耗电的模型可能会对环境产生灾难性的影响,因为服务器和数据中心的电力消耗会产生温室气体。

被爆出。

上周,来自《华尔街日报》的报道,Sam Altman 正在与包括阿联酋政府在内的投资者进行谈判,筹集高达7万亿美元的资金,以增加全球半导体芯片的供应。

看上去,OpenAI 距离 AGI(通用人工智能)只差 AI 算力了。

而周一,在迪拜举行的世界政府峰会上,当被问及“7 万亿美元可以购买多少个 GPU”时,黄仁勋打趣道:“显然是所有的 GPU”。

但就像《华尔街日报》一篇报道的标题,筹集数万亿美元可能是 Altman 芯片计划里最容易的部分。

毋庸置疑,芯片制造是比金钱复杂得多的挑战,作为资本密集型产业,历来经历过剧烈的周期性波动,芯片制造厂对激进扩张也持谨慎态度。目前,世界上只有三家公司能够大批量生产最尖端的芯片:台积电、三星电子和英特尔。

Sam Altman 到底看到了什么,决定如此重押算力?

如果把大模型厂商划分为两种,一种是在落地场景中探索大模型。其中的“显眼包”代表包括英伟达、微软、Databricks,三者都强调算力瓶颈会随着模型尺寸变小、下一代芯片架构创新等取得突破来进一步破除,就像互联网带宽限制在 2000 年基本消失一样,“GPU 也会发生同样的情况”。

另一种大模型厂商的典型代表则是 OpenAI,对于大模型技术,要不计成本地做标本、数典范、探索边界。对于 OpenAI 率先看到的未来,Q*、GPT-5 的消息让外界对 Transformer 能否实现 AGI 充满想象。这可能也是 Sam Altman 芯片制造野心的起点。

据报道,除了投资方,Altman 还与芯片制造商比如台积电进行了讨论,讨论与他们合作并使用数万亿美元建设和运营新工厂,以及对能源和其他人工智能基础设施的投资。

建设一家尖端芯片工厂通常至少需要 100 亿美元,相比之下,Altman 所讨论的 7 万亿美元规模是极端的。对于 Sam 的 7 万亿美元,黄仁勋预判,到 2029 年全球建设人工智能数据中心的成本将达到 2 万亿美元,他表示,“你不能假设你会购买更多电脑,你还必须假设计算机会变得更快,因此你需要的总量不会那么多。”

在 OpenAI 内部,Sam Altman 看到了什么?

对于这个问题,The information 跟踪 AI 和云计算的两位记者在《The Most Exciting Thing About Altman’s Chip Dream》一文作出探讨,由极客公园编译整理。

一、无限的算力会带来真正的人工智能

上周,OpenAI 首席执行官 Sam Altman 抢尽风头。他正试图筹集数万亿美元的资金来开发和制造 AI 芯片。尽管这一数字多少有点骇人听闻,但姑且先把集体怀疑放在一边,尝试理解 Altman 融资的意义——无限的计算能力将导致全能的人工智能。

社交媒体 X 平台,网友总结 7 万亿美元的购买力|来源:twitter.com

换句话说,他认为唯一阻碍超级人工智能的是服务器短缺,而实现超级人工智能,甚至可以帮助我们移民火星或解决全球变暖问题。

Altman 并不是唯一持这种观点的人,但这远非共识。

四年前,OpenAI 发表了一篇关于大型语言模型领域的“缩放定律”(Scaling Law)的论文。“缩放定律”表明,对大语言模型进行更多计算能力和数据方面的训练,可以提高其预测下一个单词的准确性,从而提高大模型的能力。在这个信念下,OpenAI 等大模型厂商花了1亿多美元来训练一个模型。

然而,更多 AI 从业者认为,在今天的 AI 模型上投入更多芯片和数据并不是实现超级人工智能的途径。当我们用完高质量的、人类生成的数据来训练 AI 模型时,基于相对较少的数据,开发出能够像人类一样学习和推理的软件可能会更容易。毕竟,OpenAI 的 GPT-4 和谷歌的 Gemini 已经接受了世界上大多数公共文本信息的训练,它们还没有达到超级人工智能的水平。

利用“缩放定律”训练大模型还隐含着一个副作用:强行使用更大、更耗电的模型可能会对环境产生灾难性的影响,因为服务器和数据中心的电力消耗会产生温室气体。

Altman 本人也承认,开发前沿大模型可能需要在能源方面取得重大突破。数据中心公司的管理者也已经开始担心,今年所有以人工智能为重点的新数据中心,是否有足够的电力供应。

二、OpenAI 必须保持算力领先

目前,我们只能假设 Altman 和他聪明的同事们知道一些我们不知道的大模型“缩放定律”。

显然,他们相信,有了更多的服务器,他们可以利用现有的人工智能和最近的技术突破,比如 Q*——一个可以推理以前没有训练过的数学问题的模型——来创建正确的“合成”(非人类生成的)数据。当用完人类生成的数据后,合成数据可以接着被用来训练更好的模型。

或者,这些模型可以找出现有模型(如 GPT-4)的缺陷,并提出技术改进建议——换句话说,就是自我改进的人工智能。(此前,谷歌资深工程师卢一峰独家向极客公园解读了 OpenAI Q*可能代表的技术路径。)

Altman 已经明确表示,他的团队根本没有从其独家服务器供应商——微软那里获得足够的计算能力来发挥其潜力。私下里,他曾表示,明年谷歌将拥有比 OpenAI 更强大的计算能力来开发人工智能。这在某种程度上可以理解他想改变现状的紧迫性。

被爆出 7 万亿美元筹资建芯片时,Altman 在 X 社交平台发表观点|来源:twitter.com

Altman 到底需要多少钱才能到达计算的“应许之地”?据报道,他与阿拉伯联合酋长国盛产石油的酋长们提出了7万亿美元的数字,他希望这些酋长能资助新的芯片和服务器。

一位头部 AI 芯片厂商的 CEO 称,建造数据中心、发电厂和芯片代工厂,以产生10倍于微软现有计算能力的计算能力,将耗资1000亿至2000亿美元。

这位 CEO 和该领域的其他人士表示,由于劳动力和供应链的限制,资金在加速芯片制造厂、数据中心和发电厂的建设方面所能做的只有这么多。就连英伟达 CEO 黄仁勋也对7万亿美元的数字表示怀疑。

如果 Altman 的计划包括 OpenAI 开发自己的服务器芯片,那将需要数年时间,而且不能保证成功。

这就提出了一个问题,为什么他首先要寻找数万亿美元?

如果 Altman 与英特尔、AMD、阿联酋和一长串其他公司达成一笔大交易,打造新的人工智能芯片,这将很容易成为这十年来最重要的技术努力之一。但即使什么都没发生,Altman 不得不在更小的算力规模上,测试他对自我改进的人工智能假设,这也足以让人感到兴奋。

本文来自微信公众号:Founder Park(ID:Founder-Park),作者:极客公园

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2024年2月19日
下一篇 2024年2月19日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日