谷歌的“基础世界模型”来了

Genie。

谷歌还提出,Genie。

其次,Genie。

或者,应用在真实世界的图像中:

再次,谷歌认为。

技术揭秘:论文《Genie。

Genie。

具体而言:

潜在动作模型:为了实现可控的视频生成,谷歌将前一帧所采取的动作作为未来帧预测的条件。

视频分词器:在之前研究的基础上,谷歌将视频压缩为离散。

Genie。

智能体训练。

问世才两个星期,谷歌的世界模型也来了,能力看起来更强大:它生成的虚拟世界“自主可控”。

刚刚,谷歌定义了生成式 AI 的全新范式 —— 生成式交互环境(Genie,Generative Interactive Environments)Genie 是一个 110 亿参数的基础世界模型,可以通过单张图像提示生成可玩的交互式环境。

我们可以用它从未见过的图像进行提示,然后与自己想象中的虚拟世界进行互动。

不管是合成图像、照片甚至手绘草图,Genie 都可以从中生成无穷无尽的可玩世界。

Genie 由三个部分组成:一个潜在动作模型,用于推断每对帧之间的潜在动作;一个视频 tokenizer,用于将原始视频帧转换为离散 token;一个动态模型,用于在给定潜在动作和过去帧 token 的情况下,预测视频的下一帧。

看到这项技术发布,很多人表示:谷歌又要来领导 AI 技术了。

谷歌还提出,Genie 学到的潜在动作可以转移到真实的人类设计的环境中。在这个假设基础上,谷歌针对机器人视频训练了一个 Genie 模型,作为机器人领域潜在世界模型应用的概念验证。

被颠覆的游戏、设计、XR、机器人行业……

我们可以从四个维度来理解 Genie 的革命性意义。

首先,Genie 可以在没有动作标签时学习控制。

具体来说,Genie 借助大量公开的互联网视频数据集进行了训练,没有任何动作标签数据。

这本来是一个挑战,因为互联网视频通常没有关于正在执行哪个动作、应该控制图像哪一部分的标签,但 Genie 能够专门从互联网视频中学习细粒度的控制。

对于 Genie 而言,它不仅了解观察到的哪些部分通常是可控的,而且还能推断出在生成环境中一致的各种潜在动作。需要注意的是,相同的潜在动作如何在不同的 prompt 图像中产生相似的行为。

其次,Genie 可以培养下一代“创作者”(creator)

只需要一张图像就可以创建一个全新的交互环境,这为生成和进入虚拟世界的各种新方法打开了大门。例如,我们可以使用最先进的文本生成图像模型来生成起始帧,然后与 Genie 一起生成动态交互环境。

在如下动图中,谷歌使用 Imagen2 生成了图像,再使用 Genie 将它们变为现实:

Genie 能做到的不止如此,它还可以应用到草图等人类设计相关的创作领域。

或者,应用在真实世界的图像中:

再次,谷歌认为 Genie 是实现通用智能体的基石之作。以往的研究表明,游戏环境可以成为开发 AI 智能体的有效测试平台,但常常受到可用游戏数量的限制。

现在借助 Genie,未来的 AI 智能体可以在新生成世界的无休止的 curriculum 中接受训练。谷歌提出一个概念证明,即 Genie 学到的潜在动作可以转移到真实的人类设计的环境中。

最后,谷歌表示,Genie 是一种通用方法,可以应用于多个领域,而不需要任何额外的领域知识。

尽管所用数据更多是 2D Platformer 游戏和机器人视频,但该方法具备通用性,适用于任何类型的领域,并可扩展到更大的互联网数据集。

谷歌在 RT1 的无动作视频上训练了一个较小的 2.5B 模型。与 Platformers 的情况一样,具有相同潜在动作序列的轨迹通常会表现出相似的行为。

这表明 Genie 能够学习一致的动作空间,这可能适合训练机器人,打造通用化的具身智能。

技术揭秘:论文《Genie: Generative Interactive Environments》已公布

谷歌 DeepMind 已经放出了 Genie 论文。

论文地址:https://arxiv.org/pdf/2402.15391.pdf

项目主页:https://sites.google.com/view/genie-2024/home?pli=1

论文的共同一作多达 6 人,其中包括华人学者石宇歌(Yuge Jimmy Shi)。她目前是谷歌 DeepMind 研究科学家, 2023 年获得牛津大学机器学习博士学位。

方法介绍

Genie 架构中的多个组件基于 Vision Transformer (ViT) 构建而成。值得注意的是,由于 Transformer 的二次内存成本给视频领域带来了挑战,视频最多可以包含 (10^4 ) 个 token。因此,谷歌在所有模型组件中采用内存高效的 ST-transformer 架构(见图 4),以此平衡模型容量与计算约束。

Genie 包含三个关键组件(如下图所示)

1) 潜在动作模型(Latent Action Model ,LAM),用于推理每对帧之间的潜在动作 ;

2) 视频分词器(Tokenizer),用于将原始视频帧转换为离散 token ;

3) 动态模型,给定潜在动作和过去帧的 token,用来预测视频的下一帧。

具体而言:

潜在动作模型:为了实现可控的视频生成,谷歌将前一帧所采取的动作作为未来帧预测的条件。然而,此类动作标签在互联网的视频中可用的很少,并且获取动作注释的成本会很高。相反,谷歌以完全无监督的方式学习潜在动作(见图 5)

视频分词器:在之前研究的基础上,谷歌将视频压缩为离散 token,以降低维度并实现更高质量的视频生成(见图 6)。分词器在整个视频序列上使用标准的 VQ-VQAE 进行训练。

动态模型:是一个仅解码器的 MaskGIT transformer(图 7)

Genie 的推理过程如下所示

实验结果

扩展结果:

为了研究模型的扩展行为,谷歌对参数量为 2.7B 到 41M 的模型进行了实验来探讨模型大小和批大小的影响,实验结果如下图 9 所示。

可以观察到,模型大小增加,最终训练损失会减少。这有力地表明 Genie 方法受益于扩展。同时,增加批大小也会给模型性能带来增益。

定性结果:

谷歌展示了在 Platformers 数据集上训练的 Genie 11B 参数模型和在 Robotics 数据集上训练的较小模型的定性实验结果。结果表明,Genie 模型可以生成跨不同领域的高质量、可控视频。值得注意的是,谷歌仅使用分布外(OOD)图像 prompt 来定性评估其平台训练模型,这表明 Genie 方法的稳健性和大规模数据训练的价值。

智能体训练。或许有一天,Genie 可以被用作训练多任务智能体的基础世界模型。在图 14 中,作者展示了该模型已经可以用于在给定起始帧的全新 RL 环境中生成不同的轨迹。

作者在程序生成的 2D 平台游戏环境 CoinRun 中进行评估,并与能够访问专家操作作为上限的预言机行为克隆 (BC) 模型进行比较。

消融研究。选择在设计潜在动作模型时,作者仔细考虑了要使用的输入类型。虽然最终选择使用原始图像(像素),但作者在设计 Genie 时针对使用标记化图像的替代方案(在图 5 中用 z 替换 x)来评估这一选择。这种替代方法称为“token 输入”模型(参见表 2)

分词器架构消融。作者比较了三种分词器选择的性能,包括 ①(仅空间)ViT;②(时空)ST-ViViT 和 ③(时空)CViViT(表 3)

本文来自微信公众号:机器之心 (ID:almosthuman2014),作者:机器之心

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年2月26日
Next 2024年2月26日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日