“独占鳌头”之后,英伟达还想涉足定制芯片?

Sur表示,博通的专用集成电路(ASIC)业务的2020年全年收入为7.5亿美元,高于2016年的5000万美元,除了芯片设计之外,博通还为谷歌提供了关键的知识产权,并负责了制造、测试和封装新芯片等步骤,以供应谷歌的新数据中心,博通还与其他客户如Meta、微软和AT&T等公司合作设计ASIC芯片。

与排名第一的博通相比,Marvell在定制芯片上的规模稍小,但同样拥有不容小觑的实力,2023年4月,Marvell发布了基于台积电3纳米工艺打造的数据中心芯片,这也是全球第一家以芯片设计公司名义发布的3纳米芯片。

一个季度赚了123亿美元的英伟达,现在成了许多半导体企业艳羡的对象,大家头一回发现,原来GPU利润这么高,甚至能撑起2万亿美元的市值,但英伟达真的会满足于此吗?

英伟达CEO黄仁勋曾在2008年发表过感言,认为公司应该把研究客户的需求,解决客户的问题放在第一位,而不是去关注对手,如果把精力放在如何从对手那里把客户抢过来,就会错失开拓新客户的机会。

16年之后,英伟达的CEO还是黄仁勋,虽然股价市值规模早已翻了十数倍乃至上百倍,但在他的掌舵下,英伟达依旧走在不断寻找新客户的道路上。

据路透社报道,英伟达正在建立一个新的业务部门,专注于为云计算公司和其他公司设计定制芯片,其中包括先进的人工智能处理器。

据其爆料,英伟达高管已经与亚马逊、Meta、微软、谷歌和OpenAI的代表会面,讨论为他们生产定制芯片的事宜,除了数据中心芯片外,英伟达还在寻求电信、汽车和视频游戏行业的客户。

路透社的这份报道,意味着英伟达要以强势姿态切入数据中心定制芯片市场,要在传统的游戏、新兴的人工智能等领域之后开拓一片新的战场。

那么,英伟达为什么要这么做,它的胜算又有几何呢?

定制双雄

从2020年开始,自研和定制成为了半导体行业的热门词,从苹果发布M1芯片开始,似乎每个厂商都在尝试自研芯片,以此来获得成本上的优势。

但对于超大规模数据中心企业(Hyperscaler)公司来说,他们对于硬件和软件都有接近完全的掌控力,非常适合开发自己专属的SoC,而他们在这方面的研究也确实要早得多,定制化芯片初期最大的推动因素,就是来自这些企业对AI,以及云端计算的庞大需求。

早些年靠AlphaGo一炮而红的谷歌,就是定制化芯片的先行者。

2013年,Google AI负责人Jeff Dean经过计算后发现,如果有1亿安卓用户每天使用3分钟的手机语音转文字服务,其中消耗的算力就是Google所有数据中心总算力的两倍,而全球的安卓用户远不止1亿。

此时谷歌已经意识到,光靠通用的CPU和GPU已经无法满足未来庞大的计算需求,而出路就是选择定制芯片,为此,它定下了一个目标:针对机器学习这一目的来构建特定领域计算架构(Domain-specific Architecture),还要将深度神经网络推理的总体拥有成本(TCO)降低至原来的十分之一。

2016年的Google I/O开发者大会上,谷歌首席执行官Sundar Pichai正式向世界展示了TPU这一自研成果,初代TPU采用了28纳米工艺制造,运行频率为700MHz,运行时功耗为40W,谷歌将处理器包装成外置加速卡,安装在SATA硬盘插槽中,实现即插即用。TPU通过PCIe Gen 3×16总线与主机连接,可提供12.5GB/s的有效带宽。

但初代TPU并非谷歌自己独立打造,它的背后,离不开博通的助力。

根据2020年摩根大通分析师Harlan Sur的报告,谷歌TPU v1至v4这几代均是它与博通共同设计的,当时它已经开始生产采用7nm工艺的TPU v4,并开始与谷歌合作设计采用5nm工艺的TPU v5。

Sur表示,博通的专用集成电路(ASIC)业务的2020年全年收入为7.5亿美元,高于2016年的5000万美元,除了芯片设计之外,博通还为谷歌提供了关键的知识产权,并负责了制造、测试和封装新芯片等步骤,以供应谷歌的新数据中心,博通还与其他客户如Meta、微软和AT&T等公司合作设计ASIC芯片。

这位分析师还在2022年5月表示,Meta正在使用定制芯片来构建其Metaverse硬件,成为博通下一个价值数十亿美元的ASIC客户,“我们相信,这些成果会主要集中在5纳米和3纳米工艺上,并将用于支持Metaverse硬件架构,该架构将在未来几年内得到部署,Meta将在未来三到四年内成为博通继谷歌之后下一个年产10亿美元的ASIC客户。” Sur谈到。

在人工智能元年到来之前,博通就与谷歌和Meta勾肩搭背,极大地拓展了自己在数据中心芯片市场中的份额,而在2023年人工智能爆火后,微软所推出的Maia 100芯片,及其尚在研发中的网卡,背后可能都有博通的参与,依靠着这几个巨头,博通成为了一人之下万人之上的AI赢家。

博通的最新财报也体现了这一点,其2024年第一季度财报显示,该季度半导体营收73.9亿美元,同比增长4%,营收占比62%,其中网络营收33亿美元,同比增长46%,占半导体营收45%,主要由两大客户定制DPU芯片增长拉动,预计2024年网络营收同比增长35%+。

值得一提的是与AI相关的业务,博通将AI ASIC和专注于AI的网络解决方案一起归类为AI加速器,截至2023年,该业务总销售额合计占全年半导体收入的15%,即约42亿美元,而2024年第一季度AI营收约23亿美元,占半导体营收31%,较前一年同期翻了四倍,预计2024年总占比会在35%以上,意味着2024年AI营收规模超100亿美元(此前预计75亿美元),预计同比增长约133%左右;

而在营收超100亿美元的目标当中,定制DPU芯片约70亿美元,20%是交换机/路由器芯片,10%是光芯片以及互联芯片等,这就意味着,光是为谷歌、Meta和微软这样的巨头定制芯片,就能赚得盆满钵满。

博通首席执行官Hock Tan丝毫不掩饰自己对AI以及定制芯片的乐观,他在财报电话会议上表示:到2024财年,网络收入将同比增长30%,这主要得益于网络连接部署的加速以及超大规模企业中人工智能加速器的扩展,预计生成式AI的收入将占半导体收入的25%以上。

与排名第一的博通相比,Marvell在定制芯片上的规模稍小,但同样拥有不容小觑的实力,2023年4月,Marvell发布了基于台积电3纳米工艺打造的数据中心芯片,这也是全球第一家以芯片设计公司名义发布的3纳米芯片。

2023年6月,台湾媒体自由时报报道称,Marvell获得亚马逊AI订单。通过此次合作,Marvell将协助亚马逊第二代AI芯片(即Trainium 2)的设计,预计2023年下半年启动委托设计,2024年进入量产。

早在2020年12月,亚马逊就推出了一款全新的机器学习定制训练芯片Trainium,与标准的AWS GPU实例相比,Trainium承诺可带来30%的吞吐量提升、以及降低45%的单次引用成本,随后亚马逊又在2023年11月推出了升级版Trainium 2,这两代芯片推出的背后,也少不了Marvell的影子。

在Marvell官网上,更是直白地提到自己是AWS的战略供应商,提供云优化芯片,帮助满足AWS客户的基础设施需求,包括提供电子光学、网络、安全、存储和定制设计解决方案,考虑到亚马逊目前是全球最大的云服务提供商,且谷歌有意于从博通转向Marvell,其在定制芯片上的实力可见一斑。

在Marvell发布的截至2024年2月3日的第四财季与年度财务报告中,2024财年第四季度营业收入为14.27亿美元,超出中旬时所给出的预期。Marvell的董事长兼首席执行官马特·墨菲先生对此强调:“我们的Marvell 2024财年第四季度营收突破了14.27亿美元,超过了预期。而人工智能带来的收入增长更是惊人,使我们的数据中心终端市场的收入环比增幅达到38%,同比增长则高达54%。

有意思的是,在此前的2024年第三季度财报中,Marvell就宣布自己通过为云供应商开发定制芯片,在云计算领域也实现了增长。首席执行官墨菲表示:“云计算客户仍然专注于通过构建他们自己的定制计算解决方案来增强他们的人工智能产品,我们已经赢得了许多这样的设计。”

虽然不清楚Marvell与哪些巨头达成了合作,但其中必然有亚马逊的席位。从Marvell 2017年收购Cavium,2019年收购Globalfoundries的ASIC业务部门Aquantia,2020年收购了光芯片厂商Inphi,2022年收购网络交换芯片厂商Innovium这一番布局来看,其图谋所求还是挺大的。

此外,相较于博通依靠巨头的做法,Marvell的押注更加关键,早在2020年9月,Marvell就帮助今年爆火的Groq设计生产出了Groq Node,其中Marvell提供了构建ASIC及其与外界接口的构建块,而Groq自己则专注于人工智能加速。

博通与Marvell,足以称得上是人工智能时代里的定制双雄。

谁是对手

虽然博通和Marvell并未获得英伟达那样的关注度,由于非AI业务的拖累,现在的财报不够好看,股价也难以与英伟达比拟,但它们背后所潜藏的广阔市场足以让英伟达侧目。

“超大规模数据中心企业自己做芯片比向外大量购买还要便宜,并省掉了中间商的成本。”EDA工具与知识产权巨头Cadence数位与签核部门VP Kam Kittrell认为,“这些公司通常是自家云端服务的使用者,并且拥有高价值的专门化软件。他们可以针对这些软件打造能源效率更佳的专属硬件。”

“我们看到最大的成长是来自于数据基础架构的领域,包含云端、数据中心、网络、储存设备,以及5G基础架构等应用。”Alphawave Semi行销主管Sudhir Mallya表示:“从今天来看,定制化芯片在数据中心基础架构应用上的成长幅度实在惊人。从几年前Google、微软、AWS、Meta等超大规模数据中心企业都纷纷开始设计自家芯片,我们就看到了这个趋势。”

据研究公司650 Group的Alan Weckel估计,数据中心定制芯片市场今年将增长至100亿美元,到2025年将翻一番。Needham分析师Charles Shi表示,到2023年,更广泛的定制芯片市场价值约为300亿美元,约占全球芯片年销售额的5%。

“博通的定制芯片业务达到100亿美元,而Marvell的规模约为20亿美元,这是一个真正的威胁,”芯片研究集团SemiAnalysis的创始人迪伦·帕特尔(Dylan Patel)表示。“这是一个真正的大利空——有更多的竞争者加入了战局。”

有意思的是,英伟达CEO黄仁勋最近在斯坦福的演讲里,也提到了这一广阔市场,他表示,英伟达不仅有来自竞争对手的竞争,还有来自客户的竞争(云服务厂商),客户可以为特定的算法构建一款优秀的芯片(ASIC),但计算不仅仅是关于transformer,更何况英伟达正在不断地发明新的transformer变种。

黄仁勋着重提到了成本,他表示,购买和销售芯片的人仅仅考虑的是芯片的价格,而运营数据中心的人考虑的是整个运营成本、部署时间、性能、利用率以及在所有这些不同应用中的灵活性。总地来说,英伟达的总运营成本(TCO)非常好,即使竞争对手的芯片是免费的,最终算下来它也不够便宜,英伟达的目标是增加更多价值,以至于替代品不仅仅是关于成本的问题。

作为英伟达实际掌控人的他,首先对目前的ASIC芯片表达出了不屑,而后他表示,只要有需要,英伟达随时可以利用已有的IP和技术积累,为客户打造出更好的定制芯片,这也与前文中路透社的报道相吻合。

“我们是否愿意定制化?是的,我们愿意。为什么现在的门槛相对较高?因为我们平台的每一代产品首先有GPU,有CPU,有网络处理器,有软件,还有两种类型的交换机。


我为一代产品建造了五个芯片,人们以为只有GPU一个芯片,但实际上是五个不同的芯片,每个芯片的研发成本都是数亿美元,仅仅是为了达到我们所说的‘发布’标准,然后你必须将它们集成到一个系统中,然后你还需要网络设备、收发送器、光纤设备,以及大量的软件。

运行一个像这个房间这么大的计算机,需要大量的软件,所以这一切都很复杂。如果定制化的需求差异太大,那么你必须重复整个研发过程。然而,如果定制化能够利用现有的一切,并在此基础上增加一些东西,那么这就非常有意义了。

也许是一个专有的安全系统,也许是一个加密计算系统,也许是一个新的数值处理方式,还有更多,我们对这些非常开放。我们的客户知道我愿意做所有这些事情,并认识到,如果你改变得太多,基本上就等于把它们全部重置了,浪费了近千亿美元。所以他们希望在我们的生态系统中尽可能地利用这些(减少重置成本)。”

事实上,隔壁的两家早已在数据中心芯片上不断推陈出新。AMD有Instinct计算GPU,以及EPYC处理器(采用chiplet设计),来解决AI和HPC工作负载;Intel则采用多方位策略,运用单体的Habana处理器处理AI应用,多芯片的Data Center GPU Max处理AI及HPC应用,以及多芯片的第四代Xeon可扩充CPU处理其余应用。

还在采用单体设计的英伟达H100,目前在AI上的竞争力依旧强大,这种优势并非无法消弭,尤其是考虑到它昂贵的价格。像亚马逊、谷歌、Meta、微软这样的云服务巨头,他们既有开发定制化数据中心芯片的雄厚财力,也有为之设计一套配套软件的技术能力,为了提升效率和降低成本,本就在往这一方向上发展,AI的到来只是加速了向定制化芯片迁移的过程。

当云服务厂商率先转向定制芯片后,所生产出来的芯片不仅服务自身,还可以开放给其他厂商,长此以往就是定制芯片比例越来越高,英伟达芯片比例就会越来越少,如今它所构筑出的2万亿帝国可能就会在顷刻间崩塌。

黄仁勋的演讲中,一方面强调成本,表达出“定制芯片很不错,但算下来还是我的芯片更划算”的意思,另一方面也对定制芯片持有开放态度,先安抚住自己这群躁动的客户再说,成本高?给你优惠,定制化?先提需求,有什么问题不要急,我们坐下慢慢谈。

这种态度,实际上体现出了英伟达如今的左右为难,还记得文章开始所提到的黄仁勋的感言吗?英伟达把客户需求而不是竞争对手放在第一位,这一招让英伟达在GPU市场里横行了二十余年而未尝一败,但当客户变成对手时,多少是有些尴尬的。

从这一角度看,博通和Marvell倒也不用过于担心英伟达横插一脚,一旦英伟达开启定制化芯片的先河,那就会引发一场厚此薄彼的矛盾,英伟达B100和定制化芯片哪个更好,不同的定制芯片又有怎样的性能差异等等,这都是黄仁勋未来所需要考虑的问题。

写在最后

英伟达现在所涉及的领域之广,绝非昔日能比,2008年的英伟达可能只需要盯着AMD和英特尔就行了,但2024年的英伟达,要盯着的厂商数量早已翻了好几倍,且都不是等闲之辈。

而它最近向美国证券交易委员会提交的文件中,也放入了一堆竞争对手,英特尔、AMD、博通、高通、亚马逊和微软都位列其中,面对几个巨头的咄咄逼人,英伟达再淡定,额头多少也沁出了一些汗珠,并非像以往那样风淡云清。

或许英伟达现在真的需要思考下,不把打败对手当成目标了。

本文来自微信公众号:半导体行业观察 (ID:icbank),作者:邵逸琦

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年3月17日
Next 2024年3月17日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日