大模型预测,下一个token何必是文字?

如今,大模型的生成内容,早已不只是文字、图像、视频了。

如果“X“的模态从“文字Word”变成了“体检报告”,模型则可以根据历史体检报告数据去预测下一个体检报告,这才是一个健康管理大模型。

AIGC的第一范式以文本生成为核心,通过智能客服、内容续写等应用,展示了AI在理解和生成自然语言方面的能力。

而AIGC的第四范式,就是以行业为主,技术将全面渗透到各个行业之中。

太快了太快了……

大模型的生成技能,已经到了普通人看不懂的境界!

它可以根据用户过去5年的体检报告,生成未来第1年、第2年、第3年的体检报告。

你看,这个生成的过程,是不是像极了ChatGPT,根据历史单词预测下一个单词。

它能查看过去7天机组子部件的运行情况,生成未来3天每小时的子部件报告 。

还能基于历史水文数据和未来7天气象数据,生成未来第1天、第2天……至第7天的每小时降水分析报告,包括详细降水量、降水分布。

如今,大模型的生成内容,早已不只是文字、图像、视频了

如上生成的这些报告分析涉及诸多专业知识,普通人很难基于自己的知识储备评价其合理性和正确性。

最多只能评价一句:不明觉厉!

怎么说呢?“AI似乎正在生成一切”。

LLM+行业数据,路走错了?

简单理解大模型,就是Predict the Next “X”。ChatGPT是Predict the Next “Word”。

但行业需要的往往不是预测下一个字。

比如对于慢性病患者的健康管理规划,它需要基于一系列生理指标数据,从医学角度进行数据预测。举个不恰当的例子,这更像是用数学方法解题。

如果在大语言模型基础上投喂大量专业的医学语料,更像是用语文方法读题。尽管能理解相关的术语和指标,可是给出的预测结果大概率不准确。因为问题本身超出了“语言”范畴,不能用语文方法求解

如果“X“的模态从“文字Word”变成了“体检报告”,模型则可以根据历史体检报告数据去预测下一个体检报告,这才是一个健康管理大模型。

它的逻辑更像是“种瓜得瓜、种豆得豆”。即输入“X”、输出“X”。

这里的“X”可能包含水文数据、健康报告、设备监测数值、设计推演等不同样式的专业数据。

它能基于音乐厅的几何模型和房间数据,从声源发射5000Hz频率射线,生成射线分布图,找到听觉最佳的音源摆放位置。

如何预测“X”?

所以,这些能预测下一个X的行业大模型,如何构建出来?

通过刚刚发布的先知AIOS 5.0。其核心特点是基于各行各业场景的X模态数据,构建行业基座大模型。

解决了当前行业大模型只能将行业文本数据喂给大语言模型、生成下一个字的问题,让大模型能来到的领域更加广泛。

先知是AI公司第四范式的核心产品。2015年,先知AIOS 1.0版本首次发布,通过高维、实时、自学习框架提升模型精度;2017年,先知AIOS 2.0版本利用自动建模工具HyperCycle,降低模型开发门槛;2020年发布的先知AIOS 3.0版本规范AI数据治理和上线投产;2022年,先知AIOS 4.0版本引入北极星指标,更大化发挥AI应用价值。

AIOS 5.0版本则从生成式AI+行业这一角度出发,给行业大模型提出了一种新思路。

而在公认的大模型应用落地元年里,行业大模型的发展和影响一定是此前的数倍。这种更具规模化的动向,由此也形成了AIGC趋势的下一个范式。

One More Thing:AIGC迈向新范式?

从图片、文字、视频,再到健康、水利……我们不难看出AIGC现在正以迅猛的速度朝着AI生成一切的方向飞奔。

通常来说,一切事物的发展似乎都需要一些范式来推动,而且不是新范式取代旧范式,而是它们之间互补使其更加深入和全面。

正如科学研究中的四种范式一般,即实验归纳、理论推演、计算机仿真和数据密集型科学发现,它们相互补充,共同推动了科学研究的进步。

那么若是以这种逻辑来看待AIGC,似乎类似的四种范式也已经开始出现。

AIGC的第一范式以文本生成为核心,通过智能客服、内容续写等应用,展示了AI在理解和生成自然语言方面的能力。这一阶段的AIGC技术,为后续的发展奠定了基础,使得机器能够与人类进行有效的交流和互动。

AIGC的第二范式将应用领域扩展到了图像生成

如生成对抗网络(GAN)、变分自编码器(VAE)等,可以学习从随机噪声生成逼真图像的映射。并能将输出结果用于艺术创作、图像增强、虚拟场景生成等领域。这一范式进一步展现了AI的想象力。

AIGC的第三范式则是聚焦在了视频生成,例如Gen2,例如Sora。

视频生成一定程度上反映了AI对于世界的理解。从Sora诞生以来,能否理解世界?是否是世界模拟器的说法一直争论不休。因为如果确定Sora可以理解世界,将意味着AGI大门正式开启。

而AIGC的第四范式,就是以行业为主,技术将全面渗透到各个行业之中。

这一阶段的核心任务是将AI技术与行业知识深度融合。今年作为大模型应用落地的元年,我们看到AIGC技术开始在医疗、教育、金融等关键领域发挥重要作用。

具体怎么做才能更快推进AIGC扎入行业?各路玩家都还在不断尝试中。以大语言模型为底座?还是直接训练行业大模型?不同路线都有各自的底层逻辑,谁的路线更能跑通,还言之过早。

但可以确定的是——在AI生成一切的进程中,那些能够率先利用AI技术的个人和行业,将能够更早地享受到技术带来的红利。他们将有机会引领行业变革,塑造未来的社会和经济格局。

而且也只有AIGC进入到了第四范式,才意味着完成了技术创新到商业创业的飞轮转换,意味着生成式AI开启新质生产力变革

本文来自微信公众号:量子位 (ID:QbitAI),作者:明敏、金磊

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年3月29日
Next 2024年3月29日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日