活久见,谷歌更新了Transformer架构

最新发布的Mixture-of-Depths(MoD),改变了以往Transformer计算模式。

结果显示,在更多FLOP预算下,FLOPs最优的MoD仍然比基线模型有更多的参数。

同时,研究团队还探讨了MoD和MoE结合的可能性。

网友联想到了ResNet

MoD推出后马上引发了不小关注。

他们二人都是DeepMind的研究科学家。

本文来自微信公众号:量子位(ID:QbitAI),作者:明敏,原文标题:《谷歌更新Transformer架构,更节省计算资源!50%性能提升》,题图来自:视觉中国(谷歌CEO Sundar Pichai)

谷歌终于更新了Transformer架构。

最新发布的Mixture-of-Depths(MoD),改变了以往Transformer计算模式。

它通过动态分配大模型中的计算资源,跳过一些不必要的计算,显著提高训练效率和推理速度。

结果显示,在等效计算量和训练时间上,MoD每次向前传播所需的计算量更小,而且后训练采样过程中步进速度提高50%。

这一方法刚刚发布,就马上引发关注。

MoE风头正盛,MoD已经来后浪拍前浪了?

还有人开始“算账”:

听说GPT-4 Turbo在Blackwell上提速30倍,再加上这个方法和其他各种加速,下一代生成模型可以走多远?

所以MoD如何实现?

迫使大模型关注真正重要信息

这项研究提出,现在的大模型训练和推理中,有很多计算是没必要的

比如预测下一个句子很难,但是预测句子结束的标点符号很简单。如果给它们分配同样的计算资源,那么后者明显浪费了。

在理想情况下, 模型应该只给需要准确预测的token分配更多计算资源。

所以研究人员提出了MoD。

它在输入序列中的特定位置动态分配FLOPs(运算次数或计算资源),优化不同层次的模型深度中的分配。

通过限制给定层的自注意力和MLP计算的token数量,迫使神经网络学会主要关注真正重要的信息。

因为token数量是事先定义好的,所以这个过程使用一个已知张量大小的静态计算图,可以在时间和模型深度上动态扩展计算量。

下图右上图中的橙色部分,表示没有使用全部计算资源。

这种方法在节省计算资源的同时,还能提高效率。

这些模型在等效的FLOPs和训练时间上与基线性能相匹配,但每次前向传播所需的FLOPs更少,并且在训练后采样时提速50%。

对比来看,如果为每一个token生成一个概率分布,每个token根据最高概率被送去对应的“专家”,可能会导致负载不平衡。

如果反过来,这能保障负载平衡,但是可能导致某些token被过度处理或处理不足。

最后来看论文中使用的Expert-choice MoD,router输出的权重被用于确定哪些token将使用Transformer计算。权重较大的token将参与计算,权重较小的token将通过残差连接绕过计算,从而解决每次向前传播的FLOPs。

最后,研究团队展示了MoD在不同实验中的性能表现。

首先,他们使用相对较小的FLOP预算(6e18),以确定最佳超参数配置。

通过这些实验,作者发现MoD方法能够“拉低并向右推移”isoFLOP基线曲线,这意味着最优的MoD方法在更低的损失水平上拥有更多的参数。

通过isoFLOP分析,比较6e18、2e19和1e20 FLOPs的总计算预算下的模型性能。

结果显示,在更多FLOP预算下,FLOPs最优的MoD仍然比基线模型有更多的参数。

存在一些MoD变体,在步骤速度上比isoFLOP最优基线模型更快,同时实现更低的损失。这表明在训练之外,MoD的计算节省仍然有效。

同时,研究团队还探讨了MoD和MoE结合的可能性——MoDE。

结果表明,两者结合能提供更好的性能和更快的推理速度。

网友联想到了ResNet

MoD推出后马上引发了不小关注。

有人感慨,MoE还没有弄清楚呢,MoD都已经来了。

这么高效的方法,让人马上联想到了ResNet。

不过和ResNet不同,MoD跳过连接是完全绕过层的。

还有人表示,希望这种方法是完全动态的,而不是每个层固定百分比。

这项研究由DeepMind和麦吉尔大学共同参与,主要贡献者是David Raposo和Adam Santoro。

他们二人都是DeepMind的研究科学家。此前共同带来了神作Relational inductive biases, deep learning, and graph networks

这篇论文目前被引次数超过3500次,论文核心定义了Inductive Bias(归纳偏置)概念。


论文地址:https://arxiv.org/abs/2404.02258

参考链接:

[1]https://twitter.com/TheSeaMouse/status/1775782800362242157

[2]https://twitter.com/_akhaliq/status/1775740222120087847

本文来自微信公众号:量子位(ID:QbitAI),作者:明敏

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年4月8日
Next 2024年4月9日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日