OpenAI坚信“力大砖飞”,谷歌却说模型不是越大越好

关于缩放定律的研究,先前的研究主要集中在大语言模型(LLM)上,关于它的争议一直存在:

OpenAI认为[1],每增加10倍的计算量,应该让数据集大小增加为约1.8倍,模型参数量增加为约5.5倍。

但大模型更擅长图像细节

使用前面的text2image任务作为预训练任务,分别在超分辨率任务和DreamBooth任务上做微调,发现在超分辨率任务上,相同的计算量,模型越大,FID越低(生成质量越好),而超分辨率任务最考验模型的细节生成能力。

近年来,模型规模呈现出愈来愈大的趋势,越来越多的人相信“力大砖飞”。

OpenAI虽然没有公布Sora的训练细节,但在Sora的技术报告中提到了:

Our largest model, Sora, is capable of generating a minute of high fidelity video. Our results suggest that scaling video generation models is a promising path towards building general purpose simulators of the physical world.(我们最大的模型Sora能够生成一分钟的高保真视频。我们的结果表明,扩展视频生成模型是构建物理世界通用模拟器的一条有前途的途径。)

OpenAI是Scaling laws的坚定拥护者。可是模型训练是否真的大力出奇迹呢?

谷歌最新的研究结论:不是!

谷歌研究院和约翰霍普金斯大学在最新的论文中指出:对于潜在扩散模型,模型不一定是越大越好。(论文链接:https://arxiv.org/abs/2404.01367)

Scaling laws争议一直存在

关于Scaling laws(中文译文:缩放定律),来自OpenAI在2020年发表的论文Scaling Laws for Neural Language Models,简单说就是:模型的效果和规模大小、数据集大小、计算量大小强相关,而与模型的具体结构(层数/深度/宽度)弱相关。(论文链接:https://arxiv.org/pdf/2001.08361.pdf)

Scaling Laws不仅适用于语言模型,还适用于其他模态以及跨模态的场景。缩放定律提出的意义是重大的,根据它研究人员和开发者可以更有效地设计模型架构,选择合适的模型大小和数据集规模,以在有限的计算资源下实现最佳性能。

关于缩放定律的研究,先前的研究主要集中在大语言模型(LLM)上,关于它的争议一直存在:

  • OpenAI认为[1],每增加10倍的计算量,应该让数据集大小增加为约1.8倍,模型参数量增加为约5.5倍。换句话说,模型参数量更加重要。

  • 而DeepMind认为[2],每增加10倍的计算量,应该让数据集大小增加为约3.16倍,模型参数量也增加为约3.16倍。换句话说,数据集大小和模型参数量一样重要。

先前,关于LLM的缩放定律已经被充分研究,而谷歌的最新研究则关注图像生成模型:潜在扩散模型(Latent Diffusion Models, LDMs),从DALL·E到最近大火的Sora,我们都能看到它的影子。但是谷歌的研究结论是:

  • 对于LDMs,在计算资源较少时,如果增加10倍的计算量,应该让数据集大小增加为10倍,而不增加模型参数量。换句话说,数据集大小更加的重要。

照这么说,Scaling Laws又失灵了吗?

小模型的生成质量更好

作者设计了11个文本生成图像的LDM,其参数量从3900万到50亿不等。如下图所示,第一行是模型参数量,第二行是其中Unet模型的第一层宽度,第三和四行分别是模型的GFLOPS(运行一次前向传播和反向传播所需的计算量)和花费(相对于原始866M模型的花费,即假设866M模型的花费为1.00)

众所周知,模型的总计算量等于训练步骤和GFLOPS的乘积,所以在总计算量恒定的约束下,越大的模型能得到的训练步骤就越少,所以是模型大比较重要还是训练步骤多比较重要呢?

训练步骤多比较重要。在计算资源有限时,较小的模型(训练步骤多)可以胜过较大的模型(训练步骤少);模型大小以及训练步骤的选择要和计算资源适配。下面给出了一个定性的示例,可以看出小模型的效果更好一些。

但当训练步骤恒定时,依然是模型越大越好,下面给出了一个例子:训练步骤恒为500k,不同体积模型的生成效果。

但大模型更擅长图像细节

使用前面的text2image任务作为预训练任务,分别在超分辨率任务和DreamBooth任务上做微调,发现在超分辨率任务上,相同的计算量,模型越大,FID越低(生成质量越好),而超分辨率任务最考验模型的细节生成能力。

下面是一个定性的例子:

在下面DreamBooth上的表现证明了同样的结论,即大模型更擅长图像细节。

不同体积模型的CFG相关性竟然基本一致

先简单介绍一下CFG:

CFG速率(Classifier-Free Guidance Rate)是一种在扩散模型中使用的技术,在文本到图像的生成任务中,它通过调整模型在随机生成和文本条件生成之间的平衡来实现这一目标。

扩散模型在生成过程中,通常会从一个纯噪声状态开始,逐步降噪直至产生清晰的图像。在这一过程中,CFG技术引入了一个额外的“引导”步骤,通过该步骤可以更加强烈地推动生成的图像朝着给定文本描述相符合的方向发展,CFG速率定义了这种引导的强度。

具体来说,CFG修改了模型在生成过程中使用的文本信息的权重。CFG速率为0意味着完全不使用文本信息,而较高的CFG速率意味着文本信息对生成过程的影响更大。通过调整CFG速率,可以在图文相关性与图像质量之间找到最佳平衡。

下图是不同模型和采样步骤下,最优的CFG热力图:

你会发现,同一行的颜色基本是一致的,这说明不同体积的模型受CFG的影响是基本一致的,下面给出了一个定性的示例,从左到右的CFG逐渐提高。

虽然下面一行的整体质量比上面好,但是两行从左到右的整体变化趋势基本一样。甚至作者在蒸馏模型中进行同样的实验,依然能得到同样的结论。

模型效率与品质的探索

这项研究无疑将对开发更高效的图像生成AI系统产生深远影响,因为它提出了实现模型效率与质量之间最佳平衡的指导性建议。通过深入探索潜在扩散模型(LDM)的扩展特性及模型大小与性能的关系,研究人员得以精准调整,以达到效率和质量的和谐统一。

这些成果也与AI领域的最新动态相契合,比如LLaMa、Falcon等小型语言模型在多项任务中超越大型对手。这股推动开源、更小巧、更高效模型的发展势头,旨在推动AI技术的民主化,使开发者得以在不依赖庞大计算资源的情况下,于边缘设备上构建个性化的AI系统。

参考资料

 [1]Kaplan J, McCandlish S, Henighan T, et al. Scaling laws for neural language models[J] arXiv preprint arXiv:2001.08361, 2020. 

[2]Hoffmann J, Borgeaud S, Mensch A, et al. Training compute-optimal large language models [J] arXiv preprint arXiv:2203.15556, 2022.

本文来自微信公众号:夕小瑶科技说(ID:xixiaoyaoQAQ),作者:Zicy

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年4月9日
Next 2024年4月9日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日