AIGC时代的产品思考:像用人一样用AI

从认识规则到认识需求

人类对知识以及知识的认知,可划分为四种类型:

我知道。

我不知道 我不知道(什么);

第一个“知道”是一种认知和意识,awareness。

如果有一个AI.PPT的AI应用,比我有更丰富的PPT知识,还能引导我提问,帮助我发现我其实知道的知识,帮助我学习我不知道的知识,那么AIGC的产品就能进入比传统更广阔的应用场景。

PS,ChatGPT对本文的点评:

本文来自微信公众号:橙竹洞见(ID:gh_013fe5eb0b97),作者:竺大炜

从去年开始尝试大模型应用,过程混合了兴奋和沮丧。兴奋于可能的效果和想象空间;沮丧于结果的不稳定,大模型时不时出现的幻觉。

最近的体会,问题不仅仅是大模型的底层能力还不够,也因为我对传统软件上的认知习惯,与AIGC产品模式存在冲突。

加法和减法,构建与认知

传统软件是基于规则和逻辑的,If ~ Else, 有异常必然要处理。本质上来说,传统软件是一个现实世界到数字世界的转换器。人类把现实世界的规则转移到数字环境中,清晰明确矫正后,依赖在数字世界中的新规则继续生存。规则和逻辑不断叠加,逐步构建出一个庞大的决策树。

我在刚入行计算机软件的时候,就被前辈教育到,ERP软件对企业最大的帮助,其实是强迫企业梳理出明确的业务规则。

传统软件的终点,是《模拟人生》或者元宇宙。

《模拟人生》很像真实世界,但并不是。《模拟人生》里面的生活规则是显性的,正负反馈都很及时;而现实世界是灰色的,有那么多潜规则,有那么多感性的问题,没法简单被0和1区分,没法都是选择题。

人类都讨厌客服电话中按1,2,3,4的选择,我要选择0,我想跟人说清楚我的需求。

不仅仅是潜规则难以理清,现实世界中的长尾需求太多太多,以至于转换成本过高,得不偿失。就像自动驾驶要解决的corn case没完没了。

最快实现L5的路径,是直接禁止非自动驾驶的汽车上路。

AIGC应用是另外一种模式——依赖大算力和海量数据训练,AI在认识人类和现实世界。

我在写prompt的时候,苦于没有标准的形式,能像命令行那样给到准确地输出。其实我在想用机器的语言与AI沟通,而AI则是在用人类的语言和我沟通。

而AI已经内嵌了丰富的知识和内容生成能力,我们需要做的是精确指挥,即通过精心设计的prompt来“唤醒”AI,提炼出我们需要的答案。

相比传统软件,与ChatGPT对话像是做减法。我给它的设定,其实是在限定它的工作范围,反而能得到更好的结果。

前提是我得知道自己要什么,就像罗丹所说:雕像本来就在石头里面,我只是把不必要的部分去掉。

从认识规则到认识需求

人类对知识以及知识的认知,可划分为四种类型:

  • 我知道 我知道(它)

  • 我知道 我不知道(它)

  • 我不知道 我知道(什么)

  • 我不知道 我不知道(什么)

第一个“知道”是一种认知和意识,awareness ; 第二个“知道”是知识和原料,knowledge。

只要有认知,无论是否具备相应的知识,我可以设计一个执行策略去完成任务。如果我已经具备了这个知识,我就可以自己直接去做;否则我要去学习,或者请人帮助我完成。

具备认知,就有了一定的确定性。传统软件的构建必须建立在awareness的前提下。而且对于确定性的问题,如果已经能够建立起明确的规则,那么用传统软件其实是更好的方式。

但是如果我连认知都没有,我根本不知道自己是否具备相应的知识,我都不知道如何提问,那就无法开展了。

比如说我写了一个PPT,需要将字体调整为宋体,字号为小四,字体颜色为黑,等等,我可以通过快捷键搞定,甚至通过母版/版式批量化完成所有页面。但假如说我希望PPT风格是科技感的,或者说是更模糊的“好看”/“高级”,那PPT本身就很难帮助我实现。

如果有一个AI.PPT的AI应用,比我有更丰富的PPT知识,还能引导我提问,帮助我发现我其实知道的知识,帮助我学习我不知道的知识,那么AIGC的产品就能进入比传统更广阔的应用场景。

我需要做的,则是想清楚对自己来说,到底什么是“科技感”,什么是“好看”。我的需求到底是什么,我的满意度标准是什么。

传统软件与AIGC产品的区别,在于是认识规则,还是认识需求。

像用人一样用AI

当前大模型最常见的应用是构建智能体,基于Agents 搭建工作流。我在字节COZE上做了尝试,效果还不行,但是能看得出来整个框架的思路。

大模型作为能力底座,Bot作为执行体,辅助以可联网的Plugin,本地的Knowledge base和 database,加上控制条件,俨然就是一条完整的工作链路。

无论是简单Bot, 还是带workflow的复杂智能体,写角色定义和技能说明都是关键。prompt的细微差别也会导致明显的输出效果差异。

从程序员转型到管理岗位时,我也曾困惑过是否能放得下编程。后来发现组织团队去实现一个项目,比自己单打独斗要好得多。当时开玩笑说,其实一样是编程的模式,只不过把team member当作程序来用。不同部门就是不同的类,每个人都是一个对象,有的负责底层,有的负责界面,客服就是异常处理。

当年我把人(程序员)当作模块,今天应该是把Bot(智能体)当作人。

大模型就是学校,提供高素质的“人才”,不同模型训练出来的人才能力会有差异。

写角色定义就是写岗位JD,你希望要一个什么样的人;能不能把岗位要求说清楚。

写提示就是写工作要求,你到底要它完成什么任务,哪些应该考虑,哪些不需要考虑,怎样才会让自己满意。

云平台/闭源大模型就是外包公司,把事情说清楚了直接让他们去做。

本地部署开源大模型就是组建自己的团队。高材生进了公司,还得学习内部数据和知识。

如果你清楚自己的业务,知道要招什么样的人,那未来你就能用好AIGC平台和模型。

否则呢,你会需要AIGC产品经理的帮助。

传统软件时代的产品经理,核心是发现业务逻辑规则将其数据化。SAAS软件的底层都是增删改查,区别在于是对象到底有多少属性。只要完成数据层面的抽象,其实可以不关心具体业务表现在怎么样。

AIGC时代的产品经理,核心是发现用户的底层需求和满意标准,找到合适的模型以及模型参数与之匹配。Ta 更像是一个精通业务的HR,帮老板搭建合适的团队。

好奇心和想象力,也许是人的终极价值

智能体对用户的帮助,可以分为三类:助理、分身、导师。

助理empower me, 帮我解决那些长尾琐碎的问题,

分身 duplicate me, 帮我解决时间冲突的问题;

导师 upgrade me, 帮我提升,成为更好的自己。

要让助理有效工作,必须清楚告诉它要干什么;就像把逻辑和规则给到传统软件一样,这样它才能执行任务。

要让分身有效工作,必须清楚我是谁,我的态度,价值观和独有视角,这样它才可以代表我。

要让导师有效工作,必须清楚我要什么,我喜欢什么,我重视什么,我想要成为什么样的人,这样它才可以帮助到我。

智能体当然会大规模地替代人类工作。

库克曾经说,不担心机器越来越像人,更担心人越来越像机器。

但真正的担忧是,当机器能够越来越像人一样思考,普通人是否还能继续独立思考,是否会去积累自己的经验,是否还有好奇心和想象力,而不是过于依赖于人工智能?

对了,好奇心和想象力,这是目前似乎大模型所唯二不具备的品质。

PS,ChatGPT对本文的点评:

本文来自微信公众号:橙竹洞见(ID:gh_013fe5eb0b97),作者:竺大炜

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2024年4月15日 11:16
下一篇 2024年4月15日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日