还在卷长文本?谷歌直接把文本干到无限长了

论文中写到,团队发明了一种新的注意力技术,叫做“无限注意力”(Infini-attention),通过这项技术,能使Transformer大模型在有限的计算资源条件下,处理无限长度的输入。

一个有效的记忆系统不仅对大型语言模型理解长文本来说是至关重要的,虽然论文并没有大刀阔斧地修改transformer模型的注意力机制,只是用了类似于微创手术一样的手法,把压缩记忆模块紧密地集成进了模型的标准点积注意力层(vanilla。

当人们还在比拼上下文窗口的时候,谷歌发布了这样一篇论文《Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention》。论文中写到,团队发明了一种新的注意力技术,叫做“无限注意力(Infini-attention),通过这项技术,能使Transformer大模型在有限的计算资源条件下,处理无限长度的输入。

在一个transformer模型中,注意力的作用是允许模型根据当前位置的输入元素(如词元或token)来分配权重给序列中其他所有位置的元素。而上下文窗口则限制了注意力机制的实际操作范围,即模型在计算注意力时仅考虑当前元素周围特定范围内(前后若干位置)的其他元素。

无限注意力允许允许模型在处理无限长输入序列的时候,仍能保持对上下文信息的访问能力,再也不需要在处理新输入时丢弃前一输入段的注意力状态了。那么也就是说,它的上下文窗口可以是……无限。

无限注意力机制背后的关键技术叫做压缩记忆系统,这是一种能够以紧凑形式存储和检索大量信息的结构,通过改变自身参数来捕获新信息,确保信息可以在之后被恢复。单从运行的逻辑上来讲,压缩记忆系统和咱们日常生活里压缩文件是一模一样的。

压缩记忆系统最大的作用是克服transformer标准注意力机制在处理长序列时存在的内存足迹和计算时间的二次复杂度问题,只需要通过使用固定数量的参数存储和召回信息,确保存储和计算成本保持在可控范围内。因为其参数数量不随输入序列的增长而变化,那也就是说,无论输入序列长度有多长,也不会对影响模型的复杂度。    

接下来无限注意力机制会将输入序列划分为一系列娇小的、连续的子序列,每个段具有固定的长度,使得模型在处理这些较短的段时,能够保持较低的内存需求和计算复杂度。这种分段方法避免了一次性加载和处理整个无限长序列的挑战,允许模型以流式(streaming)方式逐步处理输入,即每次仅处理一个或几个段,而非一次性加载全部数据。

在每个分段内部,无限注意力模型采用局部注意力机制来处理该段内的上下文信息。局部注意力限制了模型对当前段内token之间的注意力计算范围,通常采用因果(causal)或自回归(autoregressive)的形式,确保模型在处理当前token时,只能看到该令牌之前的所有token,而不能看到未来(即当前token之后)的任何token。

在输出结果时,无限注意力模型为了生成最终的上下文输出,要从压缩记忆中检索到的长期记忆信息与当前局部注意力计算出的上下文结合起来。这种融合确保模型既考虑了当前输入段的局部依赖,又充分利用了历史输入的长期上下文。

当你理解了无限注意力机制后再回到标题,无限注意力模型能够以流式方式处理极端长的输入序列,无需一次性加载整个无限长的输入,而是会根据历史记录进行分批次处理。那对于模型来说,就能够在有限的内存和计算资源约束下,适应并处理无限长度的上下文。

论文首先在长上下文语言建模基准上评估了无限注意力模型的表现,与包括transformer-XL在内的多种模型进行了对比。

采用无限注意力的模型在PG19(长文档数据集)以Arxiv-math(数学数据集)上都取得了远超于transformer-XL的结果,同时实现了114倍的内存压缩率,在保持低困惑度的同时提高了模型效率。    

为了进一步验证无限注意力机制的性能,论文将一个10亿参数的大语言模型进行改造,把这个模型的多头注意力(MHA)模块换成了无限注意力,并继续对其进行预训练。验证过程是,团队要求模型在长达100万tokens的输入中定位并检索隐藏的密钥信息。

预训练阶段,模型使用的输入序列长度仅为4K个tokens,以适应无限注意力的处理模式。经过3万步的预训练后,对密钥检索任务进行微调。在微调阶段,为了模拟实际应用中可能遇到的更长上下文环境,模型在包含5K个token的长度输入上进行微调。

在完成预训练和微调后,团队对模型进行评估,在不同长度(从32K到1M)和不同密钥位置(开始、中间、结束)的长输入文本中检索密钥的准确性。实验结果表明无限注意力模型在所有测试场景中均能成功找回隐藏的密钥,展现出其对极长上下文信息的卓越处理能力。

随后团队为了证明无限注意力机制在更大参数模型上的表现,又对一个用无限注意力改造的80亿参数大语言模型进行了预训练。使用8k个token长度的输入训练了3万步。模型在BookSum数据集上进行微调,输入长度设置为32K用于微调,但在评估阶段增加到500K。

根据无限注意力在50万文本长度的图书中里生成的摘要,模型超越了专门为摘要任务构建的编码器-解码器模型及其长上下文扩展版本,实现了在BookSum数据集上的新SOTA(state-of-the-art)性能。随着输入书籍文本量的增加,模型的摘要性能指标(如Rouge分数)呈现出明显的上升趋势。

一个有效的记忆系统不仅对大型语言模型理解长文本来说是至关重要的,虽然论文并没有大刀阔斧地修改transformer模型的注意力机制,只是用了类似于微创手术一样的手法,把压缩记忆模块紧密地集成进了模型的标准点积注意力层(vanilla dot-product attention layer),却彻头彻尾改善了Transformer模型在处理长序列时碰到的问题。

2022年的时候,Deepmind曾发文《∞-former: Infinite Memory Transformer》,论文提出了一个叫做∞-former的模型,通过利用连续空间注意力机制对长期记忆进行关注,让模型的注意力复杂度变得与上下文长度无关。从方法上来看,无限注意力和∞-former是有些相似的。后者以牺牲精度为代价换取了记忆长度,可是无限注意力却可以在极端长度的密钥中找到关键信息,精准度甚至比以往要高很多。

其实归根结底,无限注意力和∞-former都是对Transformer的记忆系统进行改进。不过transformer有一大缺陷是不能处理非连续的数据。因为Transformer最初的设计是用于处理自然语言这样的连续文本序列,但随着图片生成、音乐生成、视频生成等多个领域应用的崛起,模型为了应对多模态的数据结构就必须能够处理非连续的数据。谷歌若想扩大自己在多模态领域的领先地位,可能会开始数据结构方面的研究工作。  

本文来自微信公众号:硅星人Pro(ID:Si-Planet),作者:苗正

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年4月15日
Next 2024年4月15日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日