Llama 3发布,亮点在于“小”模型

GPT-3.5,而且需要的算力低、反应快,甚至可以在手机、电脑上本地运行,“希望大家继承这个趋势,训练和发布用更长时间训练更小的模型。架构中,要提升大模型的效果,需要按照特定比例提高训练大模型的数据量、模型本身的参数以及算力。

想要降低成本,最直接的方法是训练参数更小的模型,让用户的手机、电脑直接在本地运行,分担平台的压力。

怎么让更小的模型有更好的效果,成了大模型公司们的竞争焦点。

像一个人的学习成长一样,每个全新的大模型,都需要从大量的文本中学习 “知识”,才有能力去解决一个个问题。

Google 训练 70 亿参数的 Gemma 开源模型,让它 “看过” 6 万亿 Token(6 万亿个词)的文本。微软投资的 Mistral 训练 73 亿参数模型,“看过” 8 万亿个  Token 的文本。

用如此大规模的数据训练参数不到 100 亿的模型,已经是行业中比较重的方法。按照 DeepMind 研究人员提出的策略,如果考虑性价比,这么大的模型,看 2000 亿 Token 的文本就够了。不少中国一线创业公司的同等规模大模型只用了 1 万亿~2 万亿个 Token 的文本。

Meta 的 CEO 马克·扎克伯格(Mark Zuckerberg)不满足于此,他直接把下一代开源大模型送进了 “县中”,用更多习题拔高能力。Meta 昨夜推出的 Llama 3 系列大模型,80 亿参数模型用了 15 万亿 Token 的训练数据,比 Google 的多学了一倍还不止,是很多小公司产品的十倍。

根据 Meta 公布的数据,在 5 个常用大模型能力评估测试集上,它新发布的 80 亿参数模型和 700 亿参数模型,得分基本都比同级竞争对手高。尤其是 80 亿参数的 Llama 3,各项评测得分大幅超过 Google 和 Mistral 开发的同级别模型,数学、编程能力翻倍。Meta 称它们是目前 “功能最强大的、公开可用的大模型”。

Llama 3 在部分测试数据集上得分超过竞争对手。图片来自 Meta。

Meta 透露,他们还在训练 4050 亿参数的大模型,初步评测得分达到 GPT-4 水平。这则消息帮 Llama 3 获得大量关注。英伟达高级研究经理 Jim Fan 说,Meta 让开源社区得到 GPT-4 级别的大模型会是一个行业分水岭,将改变许多研究工作和创业公司的经营状况。

OpenAI 原资深研究科学家安德烈·卡帕蒂(Andrej Karpathy)认为,80 亿参数的 Llama 3 “会非常受欢迎”,效果接近参数更多的 GPT-3.5,而且需要的算力低、反应快,甚至可以在手机、电脑上本地运行,“希望大家继承这个趋势,训练和发布用更长时间训练更小的模型。”

打破 Scaling Laws:用超出行业预期的数据和算力训练模型

2020 年初,OpenAI 提出大模型的 Scaling Laws,认为在 Transformer 架构中,要提升大模型的效果,需要按照特定比例提高训练大模型的数据量、模型本身的参数以及算力。

这个规律在 OpenAI 随后发布的 GPT-3 中得到验证,他们调整这几个元素的配比,以更低的成本训练出更强的模型。

OpenAI 的接连成功,让 Scaling Laws 成为许多研究者训练大模型的关键指引。按照他们发现的规律,其他训练条件不变,大模型参数每提升 5.3 倍,训练数据量需要提升约 1.9 倍、算力提升 10 倍,是最有性价比的方案。

2022 年,DeepMind 的研究者发布论文,认为这个比例不对,低估了训练数据量的要求。他们认为,算力提高 10 倍,模型参数和训练数据量各提升约 3 倍才更有性价比。DeepMind 的新比例取得更好的效果,成为从业者训练大模型的重要参考。

现在,Meta 又进一步提高训练数据的重要性。根据 Meta 公布的信息,他们训练 80 亿参数的 Llama 3 时,把训练数据提到 15 万亿 Token,是 DeepMind 方案估算的 75 倍,发现模型能力达到 700 亿参数 Llama 2 的水平,大幅超过竞争对手。

Meta 为此付出更多算力——用 H100 训练了 130 万个小时,算力成本预计超过 100 万美元。如果用 5000 张 H100 组成的集群计算,需要不间断训练大概 11 天。而在 Meta 只需要 2 天多,因为它有 2.4 万张 H100 组成的算力集群。而且有两个。

一场小模型竞赛正在进行

根据 Meta 的说法,当前版本的 Llama 3 还没有达到性能极限。“我们一直使用的大语言模型,明显缺乏训练。(训练数据量)可能需要提高 100~1000 倍,甚至更多。” 安德烈·卡帕蒂说。

OpenAI 用 GPT-3.5 和 GPT-4 证明大模型的实力后,许多公司加速追赶的同时,也在研究如何用更低的成本利用大模型。

与传统的软件应用不同,大模型不仅开发起来费钱,运行起来(推理)也会消耗大量算力资源。大模型想要处理用户输入问题,基本要挨个处理文字中的每个字,处理 100 个字的问题,基本就要运行 100 遍大模型。

英伟达把它当作 GPU 销量增长的空间,但对于想用大模型改造业务、创造新商业机会的公司,却是负担。发布 Llama 3 时,Meta 宣布把它整合到旗下每天有数十亿人使用的 Instagram、Facebook 等产品中,如果用参数较大的模型,推理成本根本无法承受。

想要降低成本,最直接的方法是训练参数更小的模型,让用户的手机、电脑直接在本地运行,分担平台的压力。

怎么让更小的模型有更好的效果,成了大模型公司们的竞争焦点。过去一年,Google 每次发布大模型,都会推出参数较小的模型。Anthropic 发布 Claude 3 系列时也采用类似的做法。不过它们没有详细公布小模型的参数,以及如何让小模型有更好的能力。

根据 The Information 报道,微软选择利用 GPT-4 生成高质量数据,训练更小的模型,以降低部署大模型应用的成本。

Meta 训练 Llama 3 的方法截然不同,但最适合它。为了应对 TikTok 的竞争,Meta 在 2022 年采购了大量 H100,用于训练更强的内容推荐模型,为它奠定算力优势。

为了训练 Llama 3,Meta 动用了两个 2.4 万张 H100 组成的训练集群,今年计划把 H100 数量推到 35 万张——每张 30000 美元。大部分互联网巨头也只有数万张 H100,而且不少还会对外出租。

Meta 接下来大概率会沿着相同的方向,继续做更小的模型。“80 亿参数的模型,对于很多场景来说还不够小。” 扎克伯格接受采访时说,“我很想看到一个 10 亿参数,甚至 5 亿参数的模型,看我们能用它做些什么。”

本文来自微信公众号:晚点LatePost (ID:postlate),作者:贺乾明,编辑:黄俊杰

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年4月20日
Next 2024年4月20日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日