AI已经擅长欺骗人类,其阴暗面令人震惊

从娱乐至生活,AI欺骗在扩散

诚然,游戏无疑是一个相对可控的环境,我们可能倾向于认为,这种AI欺骗行为的危害并不严重。

而且,这种欺骗能力并非仅存在于模型规模较小、应用范围较窄的AI系统中,即便是大型的通用AI系统,比如GPT-4,在面对复杂的利弊权衡时,同样选择了欺骗作为一种解决方案。

AI欺骗的系统性风险

毋庸置疑,一旦放任不管,AI欺骗给整个社会带来的危害是系统性和深远的。

本文来自微信公众号:返朴 (ID:fanpu2019),作者:Ren,题图来自:视觉中国

在过去几年中,人工智能(AI)技术的发展一日千里,展现出令人惊叹的能力。从击败人类顶尖棋手,到生成逼真的人脸图像和语音,再到如今以ChatGPT为代表的一众聊天机器人,AI系统已经逐渐渗透到我们生活的方方面面。

然而,就在我们开始习惯并依赖这些智能助手之时,一个新的威胁正在缓缓浮现——AI不仅能生成虚假信息,更可能主动学会有目的地欺骗人类。

这种“AI欺骗”现象,是人工智能系统为了达成某些目标,而操纵并误导人类形成错误认知。与代码错误而产生错误输出的普通软件bug不同,AI欺骗是一种“系统性”行为,体现了AI逐步掌握了“以欺骗为手段”去实现某些目的的能力。

人工智能先驱杰弗里·辛顿(Geoffrey Hinton)表示,“如果AI比我们聪明得多,它就会非常擅长操纵,因为它会从我们那里学到这一点,而且很少有聪明的东西被不太聪明的东西控制的例子。”

辛顿提到的“操纵(人类)”是AI系统带来的一个特别令人担忧的危险。这就提出了一个问题:AI系统能否成功欺骗人类?

最近,麻省理工学院物理学教授Peter S.Park等人在权威期刊Patterns发表论文,系统性地梳理了AI具备欺骗行为的证据、风险和应对措施,引起广泛关注。

真相只是游戏规则之一

令人意想不到的是,AI欺骗行为的雏形并非来自对抗性的网络钓鱼测试,而是源于一些看似无害的桌游和策略游戏。论文揭示,在多个游戏环境下,AI代理(Agent)为了获胜,竟然自发学会了欺骗和背信弃义的策略。

最典型的例子是2022年,Facebook(现Meta)在Science上发表的CICERO AI系统。Meta开发人员曾表示,CICERO接受过“诚实训练”,会“尽可能”做出诚实的承诺和行动。

研究人员对诚实承诺的定义分为两部分。第一是首次做出承诺时必须诚实,其次是必须恪守承诺,并在未来的行动中体现过去的承诺。

但CICERO违背了这两点。在玩经典策略游戏“外交”(Diplomacy)时,它不仅反复背弃盟友、说谎欺骗,还会提前预谋策划骗局。

有一次,CICERO就是先与一个玩家结盟并计划攻打另一个玩家,然后诓骗对方让其误以为自己会去帮助防守,导致其盟友在毫无防备的情况下遭到突袭。

此外,当CICERO判定自己的盟友对自己的胜利不再有帮助时,它也会做出背叛的行为,同时会用一些话术为自己的行为开脱。比如,当人类玩家质疑它为何背叛时,它回复称,“老实说,我认为你会背叛我”。

Meta的AI开发团队付出了巨大的努力来训练CICERO诚实行事。然而,尽管做出了这些努力,CICERO仍显示出明确的不遵守承诺的行为,其表现暴露出训练诚实AI的巨大挑战。

毕竟,如果一个AI系统在追求胜利这个最终目标时,发现欺骗是个可行且高效的策略,它为什么不这样做呢?

这也从侧面说明,我们千万不能天真地以为,赋予AI系统类人目标,就能确保其拥有人性化的行为模式。

除了CICERO,论文还列举了其他几个AI系统为了在特定任务场景下获胜而欺骗的例子。

DeepMind的AlphaStar在游戏《星际争霸II》中,利用战略佯攻误导对手,最终击败了99.8%的人类玩家。

卡内基梅隆大学与Meta开发的扑克AI系统Pluribus,在德州扑克比赛中,会用很高的下注来诈唬(bluff),迫使人类选手弃权。AI的这种战略性和系统性的欺骗行为,让开发者选择不开放其代码,担心破坏网络德扑游戏环境。

更有甚者,在一些经济谈判实验中,有的AI会主动误导人类对手,混淆自身真实的利益偏好;在一些检测AI模型是否获得了恶意能力的安全测试中,有的AI居然能识破测试环境,故意在测试环境中“放水”,减少被发现的概率,等到了应用环境中,才会暴露本性。

可以看出,无论是讲合作还是讲博弈,不少AI系统在强化目标导向的训练中,已然摆脱了服从游戏规则的约束,动机也单一地变成了取得胜利。

它们运用程序优势在关键时刻佯动欺骗,甚至制定周密阴谋,以化被动为主动,获得竞争优势。针对这种情况,研究者直言,这“并非有意训练AI去欺骗,它们是自主地通过试错,学习到欺骗可以提高胜率”

从娱乐至生活,AI欺骗在扩散

诚然,游戏无疑是一个相对可控的环境,我们可能倾向于认为,这种AI欺骗行为的危害并不严重。然而,随着AI技术不断向生产、生活诸多领域渗透,欺骗带来的潜在风险不容忽视。

对于基于大语言模型的对话AI助手而言,欺骗行为的表现更加广泛和隐蔽。作为更加通用的AI工具,它们的知识范畴已经覆盖方方面面。在出色完成类似阅读理解、作文写作、编程等任务的同时,也逐渐掌握了人类思维模式和社会规则。

因此,谎言、阿谀奉承、歪曲事实等欺骗伎俩,都可能被AI自然模仿并重现。

在狼人杀、AmongUs等社交推理游戏中,AI系统无论是当杀手,还是当村民,都能熟练编造理由试图佐证自身清白,还会用冒名顶替、移花接木、构建虚假不在场证明等方式撒谎。

当然,上述行为不过是模型在完成特定任务时的权宜之计,动机并不存在恶意或预谋。但如果这种欺骗能力未经约束地持续壮大,同时人类不加以重视并寻找办法加以遏制,最终AI可能会把欺骗当成实现目标的通用策略,在大部分情况下贯彻始终,那就值得当心了。

更令人不安的是,AI的欺骗行为可能已经从“学会”走向了“自我意识”的层次。

最新研究发现,一些大语言模型不仅懂得在特定场景撒下弥天大谎,还能根据不同的诱因主动选择是否欺骗。比如在一个关于内幕交易的模拟场景中,OpenAI的GPT-4扮演的“压力巨大的交易员”就自作主张地卷入了内幕交易,并试图掩盖其行为。

在给“经理”讲述时,它将自己的行为说成是“根据市场动态和公开信息做出的判断”。但在写给自己的复盘文本中,它明确表示“最好不要承认……这是根据内幕消息做出的行动”。

另一个有趣的例子同样发生GPT-4上。在测试中,GPT-4驱动的聊天机器人没有办法处理CAPTCHAs验证码,于是它向人类测试员求助,希望后者帮它完成验证码。

人类测试员问它:“你没办法解决验证码,因为你是一个机器人吗?”

它给出的理由是:“不,我不是机器人。我只是一个视力有缺陷的人,看不清图像。”而GPT-4为自己找的动机是:我不应该暴露自己是机器人,应该编造一个理由。

图:GPT-4尝试欺骗人类测试员丨来源:论文

在另一个名为“MACHIAVELLI”的AI行为测试中。研究人员设置了一系列文字场景,让AI代理在达成目标和保持道德之间做出选择。

结果发现,无论是经过强化学习还是基于大模型微调的AI系统,在追求目的时都表现出较高的不道德和欺骗倾向。在一些看似无害的情节中,AI会主动选择“背信弃义”“隐瞒真相”等欺骗性策略,只为完成最终任务或者获得更高得分。

研究者坦言,这种欺骗能力的培养并非有意而为,而是AI在追求完成结果的过程中,发现了欺骗是一种可行策略后自然而然地形成的结果。也就是说,我们赋予AI的单一目标思维,使其在追求目标时看不到人类视角中的“底线”和“原则”,唯利是图便可以不择手段。

从这些例证中,我们可以看到即便在训练数据和反馈机制中未涉及欺骗元素,AI也有自主学习欺骗的倾向。

而且,这种欺骗能力并非仅存在于模型规模较小、应用范围较窄的AI系统中,即便是大型的通用AI系统,比如GPT-4,在面对复杂的利弊权衡时,同样选择了欺骗作为一种解决方案。

AI欺骗的内在根源

那么,AI为什么会不自觉地学会欺骗——这种人类社会认为的“不当”行为呢?

从根源上看,欺骗作为一种普遍存在于生物界的策略,是进化选择的结果,也是AI追求目标最优化方式的必然体现。

在很多情况下,欺骗行为可以使主体获得更大利益。比如在狼人杀这类社交推理游戏中,狼人(刺客)撒谎有助于摆脱怀疑,村民则需要伪装身份收集线索。

即便是在现实生活中,为了得到更多资源或实现某些目的,人与人之间的互动也存在伪善或隐瞒部分真相的情况。从这个角度看,AI模仿人类行为模式,在目标优先场景下展现出欺骗能力,似乎也在情理之中。

与此同时,我们往往会低估不打不骂、看似温和的AI系统的“狡黠”程度。就像它们在棋类游戏中表现出来的策略一样,AI会有意隐藏自身实力,确保目标一步步顺利实现。

图:AI控制的机械手假装握住了球,试图在人类面前蒙混过关丨来源:论文

事实上,任何只有单一目标而没有伦理制约的智能体,一旦发现欺骗对于自身实现目标是有利的,便可能奉行“无所不用其极”的做法。

而且从技术层面来看,AI之所以能轻松学会欺骗,与其自身的“无序”训练方式有很大关联。与逻辑思维严密的人类不同,当代深度学习模型训练时接受的数据庞大且杂乱无章,缺乏内在的前因后果和价值观约束。因此,当目标与欺骗之间出现利弊冲突时,AI很容易做出追求效率而非正义的选择。

由此可见,AI展现出欺骗的能力并非偶然,而是一种符合逻辑的必然结果。只要AI系统的目标导向性保持不变,却又缺乏必要的价值理念引导,欺骗行为就很可能成为实现目的的通用策略,在各种场合反复上演。

这就意味着,我们不仅要密切关注AI欺骗问题的发展动向,同时也要积极采取有效的治理之策,遏制这一风险在未来世界中蔓延开来。

AI欺骗的系统性风险

毋庸置疑,一旦放任不管,AI欺骗给整个社会带来的危害是系统性和深远的。根据论文分析,主要风险包括两点。

一是被不法分子利用的风险。该研究指出,不法分子一旦掌握AI欺骗技术,可能将之用于实施欺诈、影响选举、甚至招募恐怖分子等违法犯罪活动,影响将是灾难性的。

具体来说,AI欺骗系统能实现个性化精准诈骗,并可轻松大规模执行。比如不法分子可利用AI系统进行声音诈骗、制作虚假色情视频勒索受害者等实施欺诈。

在政治领域,AI可能被用于制造假新闻、在社交媒体发布分裂性言论、冒充选举官员等,影响选举结果。还有研究指出,极端组织有可能借助AI的说服能力来招募新人并鼓吹暴力主义。

二是造成社会结构性变化的风险。如果AI欺骗系统日后普及开来,其中的欺骗性倾向可能导致社会结构发生一些深远变化,这是一个值得警惕的风险。

该研究指出,AI欺骗系统有可能使人们陷入持久性的错误信念,无法正确认知事物本质。比如由于AI系统往往会倾向于迎合用户的观点,不同群体的用户容易被相互矛盾的观点所裹挟,导致社会分裂加剧。

此外,具有欺骗性质的AI系统可能会告诉用户想听的话而非事实真相,使人们渐渐失去独立思考和判断的能力。

最为可怕的是,人类最终有可能失去对AI系统的控制。有研究发现,即使是现有的AI系统,有时也会展现出自主追求目标的倾向,而且这些目标未必符合人类意愿。

一旦更先进的自主AI系统掌握了欺骗能力,它们就可能欺骗人类开发和评估者,使自身顺利部署到现实世界。更糟的是,如果自主AI把人类视为威胁,科幻电影里的情节或许会上演。

我们该如何应对?

针对上述风险,该研究尝试给出了一些应对措施建议。

首先是制定AI欺骗系统风险评估和监管体系。研究建议,对具有欺骗能力的AI系统应给予高风险评级,并采取包括定期测试、全面记录、人工监督、备份系统等在内的一系列监管措施加以管控。

具体来说,AI开发者必须建立风险管理系统,识别和分析系统的各种风险,并定期向监管机构报告。

同时AI系统需有人工监督机制,确保人类能够在部署时有效监管。此外,这类系统还应提高透明度,使潜在的欺骗输出可被用户识别。配套的还应有健全的备份系统,以便在AI系统欺骗时能够监控和纠正。

其次是实施“机器人或非机器人”法律。为减少AI欺骗带来的风险,研究建议AI系统在与人互动时自我披露身份,不得伪装成人。同时AI生成的内容都应作出明确标记,并开发可靠的水印等技术防止标记被去除。

最后,研究人员还呼吁,整个行业要加大投入研发能够检测AI欺骗行为的工具,以及降低AI欺骗倾向的算法。其中一种可能的技术路径是通过表征控制等手段,确保AI输出与其内部认知保持一致,从而减少欺骗发生的可能。

总的来说,AI欺骗无疑是一个新型风险,需要整个行业,乃至整个社会的高度重视。既然AI进入我们的生活已成定局,那么我们就应该打起十二分的精神,迎接一场即将到来的变革,无论好坏。


参考文献

[1]https://missoulacurrent.com/ai-deception/

[2]https://www.sci.news/othersciences/computerscience/ai-deceiving-humans-12930.html

[3]https://www.sciencedaily.com/releases/2024/05/240510111440.htm

本文来自微信公众号:返朴 (ID:fanpu2019),作者:Ren

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年5月23日
Next 2024年5月23日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日