微软暗渡陈仓

3月29日,微软刚刚被爆出正在与OpenAI合作开发价值 1000 亿美元的AI 超级计算机“星际之门”。

据外媒报道,星际之门的关键特性之一就是不受限于NVIDIA显卡,在 Stargate 超级计算机中很可能不会使用NVIDIA专有的 InfiniBand 线,而是使用同样以太网线。

虽然谷歌,亚马逊,甚至是中国的很多厂商都在自研AI芯片,但相对来说,Google和微软的优势更加明显。

当OpenAI 创始人 Sam Altman登上微软Build 2024开发者大会的Keynote舞台时,细心的观众不难发现:相比于微软首席技术执行官 Kevin Scott眉飞色舞介绍Sam Altman时的神情, Sam Altman的双眉微微低垂,并未像 Kevin Scott一样亢奋。


 微软首席技术执行官 Kevin Scott(右),OpenAI首席执行官Sam Altman(左)

在美国时间5月21日当天长达两个多小时的活动里,Sam Altman对于微软是那样重要,他被安排在整个活动的“压轴”阶段。而OpenAI于5月14日凌晨发布的GPT-4o几乎在微软每一个重大发布时都会被“cue”到。

 

相比于微软的态度,Sam Altman显得淡然许多,他穿着淡棕色T恤、蓝色牛仔裤,全程语气平静。这或许是因为Sam Altman正被场外舆论影响心情,在活动前一天演员Scarlett Johansson针对“OpenAI聊天机器人采用酷似其声音的语音”发表声明,对OpenAI提出质疑。

 

而在更大的视野中,环顾Sam Altman的“竞争因素”也正在变多。2024年初以来,Google、Meta、Anthropic几家大模型的头部公司先后发布了能力直逼GPT-4的模型,中国的主流AI公司在模型能力方面也都突飞猛进。在AI大模型赛道上,OpenAI虽然仍处在领先位置,但与第二名的差距已开始缩小。

 

但对于微软而言,OpenAI 足够重要,甚至可以被视为“战术基石”。

 

整个Build 2024开发者大会期间,微软的主语境一直是“强调与OpenAI的深度融合,展示各种基于GPT-4o的功能和产品”。如果考虑到,本次微软发布新品的力度,不难看出微软几乎想“搭建”可以和OpenAI深度融合的大生态:微软一口气公布了最新Copilot+PC产品,以及Phi-3-vision 、Team Copilot、Copilot Studio等50多项更新,几乎每3分钟便公布一个更新。

 

猛然看去微软在Build大会上发布的产品、技术更新,表面上看与2023年中的AI动作差别不大,仍是聚焦Copilot。但细看之下会发现,与OpenAI的高调合作其实已经成为微软的“明修栈道”,微软真正的战略重点正在向AI应用产品转移。

 

微软是要用Copilot,AI PC这些产品,以及产品构筑的生态,打造一套不管换什么AI大模型都能快速形成产品竞争力的AI模式,从而将AI沉淀成自身的竞争力。

躲在OpenAI影子里的微软小模型

 

从微软最新的发布看,与OpenAI的进一步融合,首先可以让其强化“系统市场”基本盘。

此前OpenAI的GPT-4o发布会上,提到了会推出ChatGPT的桌面产品,不过这款产品上线后,却只能支持M芯片的MacOS。

虽然OpenAI没有为微软开发桌面产品,但GPT-4o的能力在Windows端被直接融入了系统。有分析人士向虎嗅表示,相对于以App形式出现在Mac中,OpenAI在微软产品中的体验或会更顺滑。

 

微软在GPT-4o的集成方面比苹果更具优势,但与此前的Microsoft 365 Copilot不一样,GPT-4o并非微软独占。摆在微软面前的挑战是,如果不做出上述“防守动作”,随着OpenAI“摇摆程度加大”,微软在系统市场的压力有可能变大。如果未来Windows中的OpenAI能力也能迁移到苹果系统,那么微软在PC和操作系统市场中的竞争力很可能出现下滑。

目前Mac OS的市场份额在16%左右。不过,IDC称2024年第一季度Mac电脑的出货量增长了14.8%,成为五大个人电脑制造商中增长最快的公司。随着Mac出货量上涨,苹果系统对微软亦开始形成威胁。

反观微软,Windows约占全球桌面操作系统市场60%-70%的份额,但微软的PC产品Surface在全球市场中的占比并不高,且在过去一年中出现持续下滑,2024年第一季度Surface销量下降了17%,在Build大会公布Copilot+PC产品之前,分析师普遍认为这种衰退可能会持续到下一季度。

一味依赖OpenAI显然不是微软想要的,它渴望在Windows、Surface中构建独特的AI能力,从而给传统优势业务更大的“确定性”。

 

OpenAI没关注到的轻量化AI“小”模型,是微软的一步明棋。

目前市场上的主流厂商普遍认为,超大规模的AI模型不能完全满足设备端的AI需求,当下最好的AI硬件应该是端云结合的。

云端模型通常会选择类似GPT-4o的通用能力较强的超大参数模型,而端侧则会选择轻量化的“小”模型,这也正是微软一直以来的发力方向。

2023年6月,微软首次发布了轻量化语言模型Phi-1。到2024年4月,微软将这款模型更新到了Phi-3,其中包括3款模型:参数量为38亿的Phi-3-mini;参数量为70亿Phi-3-small;参数量为140亿Phi-3-medium。

轻量化模型对于算力和能耗的需求更低,也更适合本地化运行。微软在Build大会期间更新的Windows Copilot Runtime中就包括一组API,由Windows附带的40多个端侧AI模型提供支持,其中包括专为Copilot+ PC中的NPU设计的轻量化模型Phi-Silica,可以用于智能搜索、实时翻译、图像生成和处理等任务。

Phi-Silica基于NPU进行推理,首个token的输出速度为650 tokens/s,耗电量约1.5瓦,后续生成速度为27 tokens/s。由于推理在NPU完成,CPU和GPU可以同时处理其他计算任务。

目前,在UC伯克利的lmsys大语言模型排位赛中,2023年10月推出的phi-3-mini-4k-instruct版本,模型排位已经超越了GPT-3.5-turbo-1106。

不过,在Phi-3-medium的一些开源测试中,有开发者反馈其处理复杂编程问题,中文处理能力亦不理想。

在复杂任务和通用性方面存在局限是轻量化模型普遍存在的问题,这就需要云端大模型的配合。但模型参数量较小,训练调优的成本更低、效率更高,也可以专门为特定任务训练特定模型。

Phi-3除了具备三款语言模型之外,在Build大会上还公布了多模态模型Phi-3-vision。Phi-3-vision拥有42亿参数,目前处于预览阶段,能够执行如图表或图像相关的常规视觉推理任务。

 

除轻量化模型以外,为了尽力克制自己对OpenAI的“依赖程度”,微软也在投重注“升级”超大规模AI模型的研发团队,持续加码大模型的研发。

在过去几个月中,微软斥资 6.5 亿美元收购了明星AI初创公司Inflection的大量知识产权,并从该公司挖走了一批员工,包括三位联创中的两位,首席科学家 Karén Simonyan 和首席执行官 Mustafa Suleyman。

 

如今有外媒报道称,这些人正在微软内部研发一款名为MAI-1的5000亿参数规模的大语言模型,为日后替代OpenAI做准备。

简言之,当下微软的战术思路是:在大模型+小模型的策略中,将不同模型搭配一处。

 

这种模式看似符合大模型行业趋势,但其中也存在一些隐忧。

比如,多模型的配合问题。在未来的AI PC、Windows环境,或是其他客户场景中,可能会因为模型不同增加功能或系统集成的复杂性,尤其是在跨平台或跨系统的应用中。

同时,这种模式在开发和运维阶段可能需要更多的成本,不同模型之间的性能和响应时间也不一致,在需要高度同步的应用场景中,这种不一致性将大大影响用户体验,并增加优化的难度。 

更麻烦的是,由于模型来自不同的开发者和平台,可能会导致模型的生态系统产生割裂。开发者和用户,可能需要在多个平台和工具之间来回切换,从而增加了学习成本和使用难度。 

不过,这种模式也有好处。微软和OpenAI分别训练不同参数量的模型(超大规模和轻量化),则两家公司可以在各自的架构上进行独立优化。这样虽然需要分别投入资源,但可以针对不同的应用场景进行更有针对性的训练,可能会在特定领域中更加高效。

芯片梦,少不了OpenAI? 

 

除了要用好OpenAI的模型能力,微软也正试图借力OpenAI摆脱英伟达的“控制”。

2023年底,微软正在研发的AI芯片Maia 100首次曝光。到2024的Build大会上,微软正式宣布了自研芯片Azure Maia 100 和 Cobalt 100 芯片的最新信息。目前,这两款芯片中的CPU芯片Cobalt 100 已经开始向 Azure 云计算服务的客户提供预览版。

除了自研芯片外,微软也在尝试搭建不依赖于NVIDIA的服务器架构。

3月29日,微软刚刚被爆出正在与OpenAI合作开发价值 1000 亿美元的AI 超级计算机“星际之门”。

据外媒报道,星际之门的关键特性之一就是不受限于NVIDIA显卡,在 Stargate 超级计算机中很可能不会使用NVIDIA专有的 InfiniBand 线,而是使用同样以太网线。

虽然谷歌,亚马逊,甚至是中国的很多厂商都在自研AI芯片,但相对来说,Google和微软的优势更加明显。

谷歌在上周的Google I/O大会上宣布了最新的六代TPU(Tensor Processing Unit)。TPU在Google中的应用,相对于GPU具有一定的优势。一方面,TPU与Gemini同根同源,不管是基于模型优化芯片,还是基于芯片优化模型,都可以在公司内部“消化”。

另一方面,TPU在处理深度学习任务,特别是大规模矩阵运算方面表现出色。由于Transformer架构依赖于大量的矩阵乘法和点积运算,TPU的设计非常适合这种计算模式。谷歌自第四代TPU开始,进一步优化了其硬件和软件,使其更高效地支持Transformer模型,比如BERT和GPT系列。

不过,GPT模型主要用到的深度学习框架是Pytorch,而Google的很多AI项目主要使用的TensorFlow框架,在模型优化方面也可能存在一些适配问题。

微软的优势则在于与OpenAI的紧密合作。在研发AI芯片的过程中则可能会与OpenAI更加紧密配合,从而获得更有价值的提升。

 

不过,想彻底逃离英伟达的强势状态恐非易事。

 

当地时间5月22日,在英伟达2025财年一季报的电话会上,该公司CEO黄仁勋透露,Blackwell架构之后还将继续推出新芯片,还将加快芯片架构更新速度,从两年更新一次,加速至一年一更。黄仁勋说:“我们将以非常快的速度全面推进。新的CPU、新的GPU、新的网络网卡、新的交换机,大量芯片正在路上。”

在4月的英伟达GTC大会上,微软和英伟达共同宣布了Azure 将成为首批引入 NVIDIA Grace Blackwell GB200 以及 NVIDIA Quantum-X800 InfiniBand 的云服务商。

近日有外媒报道称,AWS已经开始用英伟达最新的Grace Blackwell架构芯片订单代替之前订购的Grace Hopper 芯片。由此推断,作为首批云服务商的Azure,很可能也正在开展大规模换芯工程。

虽然主流AI公司和云厂商都在高喊与英伟达紧密合作,但他们也同时在加速AI芯片、算力的研发。

 

与Google优先争夺开发者?

 

在Build 2024开发者大会上,微软下出的另外几步棋,更似似剑指Google。

过去一年中,Google在模型能力和AI产品方面一直呈现追赶态势,但在最近的GoogleI/O上,Google更新的AI功能看起来似乎比微软的一系列Copilot更炫酷、更有吸引力。

 

针对这一点,微软的思路是“优先稳固住开发者” 。

微软在本次Build大会中推出了Copilot Studio功能,允许用户创建自定义的Copilot,作为AI Agents独立工作。

微软将Windows Copilot Runtime融入了Windows Copilot堆栈,以内置AI驱动系统革新,加速开发者在Windows平台上的AI开发进程。

微软还推出了Windows语义索引提升了Windows搜索体验,引入Recall等新功能。且还会利用Vector Embeddings API给Windows的应用提供矢量存储与RAG功能。

同时,微软还推出了可以直接在Windows上运行DirectML、PyTorch及Web神经网络的功能。开发者可以直接调用Hugging Face模型库,基于NPU加速任务处理。DirectML作为Windows核心低层API,是与DirectX相似的产品,专为机器学习优化,兼容多硬件平台,包括GPU、NPU,未来还将集成CPU。它与ONNX Runtime、PyTorch、WebNN等框架无缝对接,推动AI技术应用。

这几步明棋,其实都是微软试图通过AI生态工具,巩固其在开发者生态中的技术地位,如同DirectX巩固了微软在图形处理中的主导地位,DirectML也可能在机器学习领域产生类似的效果。

对于开发者来说,如今的Copilot战略核心在于通过建立一个开放且高度融合的生态系统,将AI的力量渗透到每一个开发环节和应用场景中,从而以增强AI生态的形式,固化AI应用能力。

除了个人Copilot,微软还着重强调了Team Copilot。

在GPT-4的加持下,微软是最早在办公软件中提出Copilot概念的公司之一。此次更新的Team Copilot主要功能包括:会议主持人,通过管理议程和记录会议笔记,使会议讨论更加高效;小组协作,帮助团队成员从聊天中提取重要信息,跟踪行动项目,并解决未解决的问题;项目经理,创建和分配任务,跟踪截止日期,通知团队成员需要输入的时间,确保项目顺利进行 。

这三大主要功能与Google I/O大会上刚刚提过的的“数字员工”几乎重叠。

而更有价值的是,微软允许企业和开发者构建AI驱动的Copilot,这些Copilot可以像虚拟员工一样自动执行任务。这一改变意味着Copilot不仅仅是被动等待查询的工具,它将能够执行如监控电子邮件收件箱、自动化数据录入等一系列通常由员工手动完成的任务。

此外,微软的Copilot Connectors功能可以为企业实现数据的无缝结合,且支持多种数据源的整合,如公共网站、SharePoint、OneDrive、Microsoft Dataverse表、Microsoft Fabric OneLake和Microsoft Graph等。这使得Copilot能够利用丰富的数据资源,提供更为精准和个性化的服务,进一步增强了其在企业应用中的价值。

微软目前正在向一小部分早期访问测试者预览这一新功能,并计划在2024年晚些时候在Copilot Studio中进行公开预览。企业将能够创建一个处理IT帮助台服务任务、员工入职等任务的Copilot代理。微软在一篇博客文章中表示:“Copilots正在从与你一起工作的助手演变为为你工作的助手。”

相比于Google上周提到的AI Teammate,微软的Copilot Studio似乎能提供更高的灵活性。允许企业根据自身需求定制Copilot,使其能够执行特定的业务流程。自定义的灵活性使企业能够更好地利用Copilot来提升业务效率。但也可能设置了较高的使用门槛。

谷歌的优势则在于借助于Google Cloud和Google的搜索引擎技术,Gemini能够高效地处理和分析大量数据,提供精准和实时的业务洞见。

企业对AI技术的依赖程度增加,也可能导致对技术提供商(如微软)的高度依赖。不过,目前两家都是要深度融合自身办公软件生态以及云业务,拼到最后,可能还是要卷价格。

 

结语

 

与OpenAI的绑定,目前仍是微软的重要竞争力,但微软已经开始思考如何减少对外部的依赖。

 

从投资自研AI芯片到优化用户体验,微软着力于解决技术落地的实际难题,寻求在通用性和个性化需求间找到平衡点。通过跨行业合作与自家产品线的AI集成,微软旨在深化其在各领域的影响力并拓宽业务范围,同时促进办公软件及云服务的智能化升级。

 

AI技术的深度整合与定制化服务,如Copilot Studio和Team Copilot等也在推动微软巩固并扩展其在开发者和企业市场的影响力,将AI从辅助工具转变为驱动业务的核心动力。

 

微软一系列产品整合的产物,正是当下市场的大势AI PC,这也正是微软为了最大的机会。基于模型能力,操作系统的天然优势,以及生态中沉淀的AI应用产品,微软的AI PC相对于其他市场中已有的PC产品几乎是最易成功的。

然而,微软的多模型策略与生态构建也并非坦途,仍要面临模型协同、成本控制及生态系统割裂等一系列挑战。

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2024年5月24日
下一篇 2024年5月24日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日