已经有人替OpenAI把GPT-5做出来了?

为了降低成本,NExT-GPT利用了现成的编码器和解码器,为了最大限度减轻不同模态内容转换时出现的“噪声”,NExT-GPT利用了ImageBind,它是一个跨模态的统一编码器,这样NExT-GPT不需要管理诸多异构的模态编码器,而是可以统一将不同模态投影到大语言模型中去。NExT-GPT作为一个端到端的多模态大模型,实际上已经具备了多模态AI的雏形,论文中关于参数调优对齐以及使用MosIT进行模型推理能力强化的思路让人印象深刻,因此我们甚至可以说,迈向完全体AI的道路,此刻已经有人迈出了第一步。

从理论到实践,大语言模型LLM完全体的形态是什么样子的?

很多人会说是基于对自然语言的深刻理解,但这一点目前OpenAI的GPT系列已经做得很好。也有人在讨论AI Agent在实践上的可能性,但目前这种讨论也没有脱离对自然语言的处理范畴。

生成式AI实际上包括了两个方面,大语言模型是其中之一,它着重理解人类的语言,而更广泛的所谓AIGC应用,实际上指的是以扩散模型为代表的跨模态转换能力,也就是所谓的文生图、文生视频等等。

那么把这二者结合起来呢?在许多人眼中,这实际上就是下一代GPT,或者说GPT完全体的样子。最近出现在预印网站arxiv上的一篇来自新加坡国立大学计算机学院的论文引起了人们的注意,因为这篇论文设计的NExT-GPT模型试图进行全面的模态转换。

从上图中我们可以看到,NExT-GPT模型的输入和输出端都能生成包括文字、图片、音频和视频在内的多种模态形式。其中输出端除了文字以外均使用了对应不同模态的扩散模型。输入和输出之间的介质转换依靠大模型进行。

NExT-GPT模型的样式,实际上不仅符合目前人们试图把生成式AI的两股力量:大语言模型和扩散模型结合起来的趋势,甚至某种程度上说也符合人的直觉——人类大脑正是依靠对多种模态的自由转换和交互理解来认识这个世界的。

特别值得指出的是,所谓多模态转换与大语言模型能力的结合,并不是简单地用prompt方式在彼此之间“搭桥”,而是真正把多模态数据(向量)同语言数据结合起来,这个过程被真正拉通后,等于大模型可以不仅学习从而理解人的语言,还能把这种能力扩大到更多模态去,这种结合一旦成功,将会带来AI能力质的飞跃。

NExT-GPT结构一览:两个突破点

据说Google 和OpenAI的GPT5都在进行类似的研究。在这之前,让我们首先来看看NExT-GPT模型是怎么做到的吧。

总的来说,NExT-GPT模型是把大模型与多模态适配器以及扩散模型解码器连接了起来,仅仅在投影层进行了1%的参数调整。论文的创新之处在于创建了一个名为MosIT的模态切换调整指令,以及一个专门针对跨模态转换的数据集。

具体来说,NExT-GPT由三层组成,第一层是各种成熟编码器对各种模态输入进行编码,然后通过投影层映射到大语言模型可以理解的形式。第二层这是一个开源的大语言模型,用来进行推理。值得一提的是,大语言模型不仅会生成文本,还会生成一个独特的标记,用来指令解码层输出具体什么模态的内容。第三层则是将这些指令信号经过投影,对应不同的编码器生成对应的内容。

为了降低成本,NExT-GPT利用了现成的编码器和解码器,为了最大限度减轻不同模态内容转换时出现的“噪声”,NExT-GPT利用了ImageBind,它是一个跨模态的统一编码器,这样NExT-GPT不需要管理诸多异构的模态编码器,而是可以统一将不同模态投影到大语言模型中去。

至于输出阶段,NExT-GPT广泛使用了各种成熟的模型,包括用于图像生成的 stable diffusion,视频生成的Zeroscope,以及音频合成的AudioLDM。下图是论文中一个推理过程的一环,可以看到文本模式和信号标记决定了模态被如何识别、触发以及生成,灰色的部分是没有被触发的模态选项。

这其中涉及到了一个不同模态之间语义理解的问题,因此对齐是必不可少的。不过由于结构上比较清晰,实际上NExT-GPT的对齐是很好操作的。作者设计了一个三层的耦合结构,编码端以大模型为中心对齐,解码端则与指令对齐。这种对齐放弃让扩散模型与大语言模型之间执行完整规模的对齐过程,而是仅使用文本条件编码器,在最小化了大模型模式信号标记与扩散模型文本之间的距离后,对齐仅仅基于纯粹的文本进行,因此这种对齐的量级很轻,只有大概1%的参数需要调整。

考虑到需要让NExT-GPT具备准确地跨模态生成和推理的能力,论文还引入了MosIT,也就是Modality-switching Instruction Tuning模式切换指令微调,它的训练基于5000个高质量样本组成的数据集。

具体的训练过程有些复杂,就不展开细说了,总的来说MosIT可以重构输入和输出的文本内容,让NExT-GPT能够很好理解文本、图像、视频和音频的各种模式组合中的复杂指令,这就十分接近人类理解和推理的模式。

完全体要来了吗?

目前NExT-GPT还具有许多的弱点,作者在论文中也提到了不少,比如非常容易想到的,四种模态对于真正的多模态完全体大模型来说种类还是有点太少,训练MosIT的数据集的数量同样有限。

另外,作者还正努力试图通过不同尺寸的大语言模型来让NExT-GPT适应更多场景。

相比尺寸来说,另一个棘手的问题更为现实——尽管NExT-GPT展现出一种关于多模态能力的强大前景,但其实以扩散模型为代表的AIGC能力目前所能达到的水平依然有限,这影响了整个NExT-GPT的性能。

总的来说,多模态AI有着非常诱人的前景,因为它和应用场景以及用户的需求结合得更紧密,在大模型赛道目前热度略有下降的情况下,多模态AI给人以巨大的想象空间。NExT-GPT作为一个端到端的多模态大模型,实际上已经具备了多模态AI的雏形,论文中关于参数调优对齐以及使用MosIT进行模型推理能力强化的思路让人印象深刻,因此我们甚至可以说,迈向完全体AI的道路,此刻已经有人迈出了第一步。

本文来自微信公众号:GenAI新世界(ID:gh_e06235300f0d),作者:薛良Neil

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2023年9月19日
Next 2023年9月19日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日