AI芯片初创公司,“替代英伟达”很难

Tenstorrent的AI芯片路线图(图片来源:Tenstorrent)

成立于2017年的SambaNova,已成为AI芯片创业领域中资金最雄厚的公司之一。

Ceremorphic:模拟计算AI芯片

Ceremorphic正在设计一款采用台积电5nm工艺的超低功耗超级计算芯片,利用其自己的专利技术和多线程处理架构ThreadArch®。该公司的创始人兼首席执行官Venkat。

近期的一些消息显露出AI芯片初创公司的前景,似乎不太妙。Wave Computing破产关闭的还历历在目,现在AI芯片领域的初创公司似乎正遭遇前所未有的挑战。在英伟达的“阴影”下,一些潜在的投资者对初创公司望而却步。面对全球经济的不稳定性不断增强,投资者因而变得愈发审慎,他们对风险的忍受度显著降低,这进一步增加了AI芯片制造商在筹资时的困难。根据PitchBook的数据,对专注于人工智能的芯片制造商的风险投资,从2021年的90亿美元降至40亿美元。

虽然像Cerebras Systems、Graphcore和SambaNova这样的企业成功筹集了大量资金,并在自己的技术领域取得了一定的成就,但要撼动英伟达这样的行业巨擘仍非易事。尤其是在像ChatGPT这类大型模型应用兴起之际,英伟达的地位愈发稳固,其GPU芯片在众多AI应用中都扮演着不可或缺的角色,这使得任何试图挑战英伟达的初创公司都面临着巨大的压力。这些AI芯片初创企业需要不懈努力,以证明他们的技术不仅能与英伟达媲美,甚至具有超越的潜力和价值。

资金流动性的减少、创新步伐的放缓,以及消费者信心的衰退,都在很大程度上制约了这些初创公司的成长。在这种大环境下,AI芯片初创公司不仅要与技术巨头竞争,还要在经济大潮的冲击下稳住阵脚,这无疑对它们的生存和发展提出了更高的要求。

几近破产、融资困难、裁员,艰难的AI芯片公司

Mythic是模拟AI芯片的一家明星公司,但是据科技网站The Register报道,这家专注于模拟内存计算(CIM)的AI芯片初创公司总共筹集了约1.6亿美元资金,去年现金耗尽,几乎被迫停止运营。好在2023年3月,它成功筹集到了1300万美元投资。Mythic首席执行官Dave Rick表示,英伟达“间接”加剧了整体AI芯片公司的融资困境,因为投资者希望投资巨额、回报丰厚的全垒打型投资。

在资金筹集方面,Graphcore堪称欧洲半导体初创企业中的佼佼者。这家公司由Nigel Toon和Simon Knowles在2016年创立,此前他们将自己的硬件公司卖给了英伟达。Graphcore致力于开发IPU(智能处理单元),这一点与目前主流的针对人工智能应用的GPU(图形处理单元)截然不同。Graphcore称,其IPU在满足人工智能的特定需求方面,比GPU更具有优势。据PitchBook的数据显示,截至目前,Graphcore已经成功筹集了超过6亿美元的投资。然而,相比所筹集的资金,Graphcore的收入却相对微薄。

故事在2020年出现了重大转变,当时微软决定在其云计算中心停用Graphcore的芯片,这一举措使得Graphcore失去了一个主要客户,从而面临了更加严峻的挑战。根据金融时报的报道,到2022年,Graphcore的收入骤降了46%,仅为270万美元,同时税前亏损增加了11%,高达2.046亿美元,年终现金余额为1.57亿美元。

Graphcore表示,到明年5月份需要进一步融资才能实现收支平衡。公司将这一不利局面归咎于“宏观经济环境的逆境”和“关键战略客户”的硬件采购推迟,尤其是来自“中国的主要客户”。据路透社的消息,Graphcore关闭了在挪威、日本和韩国的业务,并缩减了在其他国家的业务。目前,Graphcore也开始重新调整业务方向,将其IPU芯片从数据中心转向部署在云计算环境中。

Rivos,一家服务器芯片制造商,正面临苹果公司的诉讼,被指控非法挖角其工程师并窃取商业机密。今年八月,Rivos裁减了大约二十名员工,约占公司员工总数的6%,在此过程中,管理层向留下的员工透露,公司获取新资金的可能性正在减少。联合创始人还向部分员工透露,苹果针对该公司及其几位前苹果员工的诉讼,严重阻碍了他们的筹资活动。

芯片公司烧钱是常态,巨额的研发投入、激烈的市场竞争以及对顶尖人才的争夺,都使得这些公司在成长的道路上不得不投入大量的资金。如今,人工智能领域初创公司给予初级工程师的薪酬往往十分可观,这一方面反映了人才市场的供不应求,另一方面也凸显了这些初创公司对技术人才的极度渴求。

然而,这种高薪策略是否可持续,却是一个值得深思的问题。对于AI芯片初创公司而言,成功融资是其发展的关键一步,但资金的有效利用同样至关重要——这不仅关乎公司的现阶段运营,更影响到其长远的战略目标和市场地位。

英伟达的一些劲敌?

Cerebras是一家“一鸣惊人”的公司,该公司因为芯片大,而捕获了行业的眼球。英伟达的A100 GPU已经相当大了,差不多826平方毫米。但Cerebras的新型芯片WSE-2芯片,面积为45225平方毫米,几乎覆盖了8英寸硅晶圆的整个表面。自2016年成立以来它已筹集了7.3亿美元。

根据CB Insights全球独角兽俱乐部的数据,该公司目前估值为40亿美元。目前,Cerebras已经与阿布扎比G42合作建造了九台人工智能超级计算机中的第一台,这台超级计算机的造价超过1亿美元。Cerebras也正在朝着生成式AI领域奋进,虽然它已经证明了其CS-2在GPT模型中训练的速度,但是其仍没有获得大型厂商的采用。

Cerebras研究人员首次在Andromeda AI超级计算机上训练了一系列七个GPT模型,参数分别为 111M、256M、590M、1.3B、2.7B、6.7B 和 13B

Tenstorrent也是业界很看好的一家初创公司,由顶级芯片设计师Jim Keller于2016年所创立。截至目前,该公司已经融资了近3.35亿美元,最近的一次投资者中包括三星和现代,目前估值约为10亿美元。Tenstorrent将利用RISC-V和Chiplet技术打造AI CPU,以此来挑战英伟达的AI主导地位。最近,Tenstorrent刚与三星达成生产合作的协议,计划使用三星的4nm工艺来生产芯片。

该公司拥有全面的路线图(如下图所示),其中包括基于RISC-V的高性能CPU小芯片以及先进的AI 加速器小芯片,有望为机器学习提供强大的解决方案。目前,Tenstorrent有两款产品:一种名为Grayskull的机器学习处理器,可提供约315 INT8 TOPS的性能,可插入PCIe Gen4插槽;另一种是联网Wormhole ML处理器,可提供约350 INT8 TOPS的性能并使用GDDR6内存子系统,一个PCIe Gen4 x16接口,并具有与其他机器连接的400GbE。

今年他们将推出其Black Hole独立ML计算机芯片。该公司的重头戏Grendel将于2024年推出,这是一种高配置、高性能的ML芯片设计,将CPU芯片与专用的ML/AI芯片相结合,与英伟达的GH200和 Grace/Hopper超级芯片的实现方式类似。

Tenstorrent的AI芯片路线图(图片来源:Tenstorrent)

成立于2017年的SambaNova,已成为AI芯片创业领域中资金最雄厚的公司之一。截至目前,该公司已成功筹集了高达10亿美元的融资,投资方包括如软银和英特尔等知名机构。这使SambaNova不仅成为融资额最高的AI芯片初创公司,也被视为英伟达最有力的新兴竞争者之一,公司估值达到了50亿美元。

SambaNova最近推出了其最新的第四代SN40L处理器。这款处理器拥有超过1020亿个晶体管,采用了台积电的5nm工艺,其计算速度高达638 teraflops。独特的三层内存系统(包括片上内存、高带宽内存和高容量内存)旨在处理与AI工作负载相关的庞大数据流。SambaNova宣称,一个只有8个此类芯片组成的节点就能够支持多达50万亿参数的模型,这几乎是OpenAI的GPT-4 LLM报告规模的三倍。

该公司的首席执行官Rodrigo Liang表示,使用标准的GPU来执行相同任务将需要数百个芯片,这意味着总成本只有使用标准方法的1/25。然而,SambaNova并不直接将芯片销售给其他公司。相反,它提供对其定制技术栈的访问权限,其中包含了为运行最大型AI模型而专门设计的专有硬件和软件。

避免与之正面竞争,会否是AI芯片初创公司的新出路?

尽管英伟达在人工智能计算领域占据主导地位,但该公司并没有牢牢锁定该领域,市场机会仍然有很多。如果按照英伟达的冯·诺依曼架构+HBM+先进工艺+互联这样的路线,可能将无人能敌英伟达,而且GPU价格和功耗一直在上涨,这对于人工智能行业本身来说是不可持续的。所以一些AI芯片公司选择不与英伟达正面竞争,另辟蹊径,走出一些差异化的路线,试图在市场中分一杯羹。

d-Matrix:存内计算芯片

d-Matrix公司也是一家AI芯片初创公司,该公司认为,随着生成式人工智能的爆发,当前的基础设施无法维持成本和需求,生成式人工智能需要变革性的计算范式。所以d-Matrix设计的芯片具有数字“内存计算”功能,使人工智能计算机代码能够更有效地运行。d-Matrix宣称可以将TCO降低十倍,并在性能和延迟方面具有二十倍的优势。

据The Register的报道,这家初创公司的最新芯片名为Jayhawk II,将采用通过高速结构连接的八个小芯片,总共2GB的 SRAM,而且只需要350瓦就能提供大约2000 TFLOPs的FP8性能和多达9600 TOPs的Int4或块浮点数学性能。

d-Matrix 路线图(来源:d-Matrix)

该芯片可帮助ChatGPT等生成型AI应用提供支持。不过该公司所针对的仅是人工智能的推理部分,训练部分则不涉猎,也就是说他们不与英伟达正面竞争,而是发力在300-600亿参数模型领域。对于这种尺寸的模型,在人工智能推理方面,英伟达的H100不一定是最经济的选择。运行这些模型的大部分成本都归结于快速高带宽内存的使用。相比之下,d-Matrix加速器中使用的SRAM更快、更便宜,但容量也有限。

d-Matrix已经在微软的支持下融资1.1亿美元,微软已承诺在明年推出该芯片时对其自用进行评估。d-Matrix预计两年内年收入为7000万至7500万美元,并实现收支平衡。

Ceremorphic:模拟计算AI芯片

Ceremorphic正在设计一款采用台积电5nm工艺的超低功耗超级计算芯片,利用其自己的专利技术和多线程处理架构ThreadArch®。该公司的创始人兼首席执行官Venkat Mattela,此前他所创立的Redpine Signals于2020年3月以3.14亿美元的价格出售给了Silicon Labs。Ceremorphic所研发的芯片的核心在于数字电路之下的模拟电路,在芯片功能的层次结构的最低层进行模拟计算,更高层次上则不做模拟计算。该公司的创始人兼首席执行官Venkat Mattela认为,模拟乘法将比数字乘法更有效地利用电压,更好地实现低功耗。

该公司的主要技术包括可靠、低能耗和安全的机器学习、图形神经处理器、抗量子和硅高效安全处理器、高性能模拟电路、可靠的时序电路和系统级互连,使产品能够针对不同的细分市场进行扩展。右图描绘了 Ceremorphic的技术组合,涵盖当前和未来的计算需求。

Ceremorphic的技术组合

结语

目前的事实证明,在英伟达所主导的GPU生态中,初创芯片公司想要活下来并不容易,“替代英伟达”很难。强如AMD和英特尔都很难撬动这块大蛋糕。对于这些AI芯片公司而言,机会窗口很窄,英伟达已经发布了其最新的路线图。而且,大型的云厂商几乎都已经躬身自研芯片了,亚马逊拥有Inferentia芯片,谷歌最近展示了其第五代张量处理单元,微软即将发布其自研芯片,这进一步挤压了希望通过云提供商进入市场的初创企业的机会。

芯片初创企业所承担的风险甚至超越了传统软件初创公司,因为它们不仅需要巨额资金来支持复杂的半导体设计和软件开发,还要承担实物产品的制造成本。随着时间的推移,我们可能会目睹一些此类企业的破产倒闭、被收购,但它们中的每一个都怀揣着成为下一个英伟达的梦想。

本文来自微信公众号:半导体行业观察 (ID:icbank),作者:杜芹DQ

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2023年10月29日
下一篇 2023年10月30日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日