讲个笑话:不透明的AI更安全

如果你看了很多报道,可能会知道GPT-3的参数量为1750亿,使用的数据集容量达到了45TB,GPT-4有1.8万亿参数规模,训练一次就要花费6300万美元,这时你会觉得大模型非常牛逼。

大模型对于公众就是一个又一个的黑箱,我们通过一些民间高手分享的prompt咒语或者自然语言与它们交流,然后得出一些神奇的结果。

你到底对大模型这个东西了解多少?

如果你问百度,他会告诉你Generative Pre-trained Transformer(GPT),是一种基于互联网可用数据训练的文本生成深度学习模型,这时你对大模型产生了一个基本概念。

如果你看了很多报道,可能会知道GPT-3的参数量为1750亿,使用的数据集容量达到了45TB,GPT-4有1.8万亿参数规模,训练一次就要花费6300万美元,这时你会觉得大模型非常牛逼。

如果你亲自使用过,比如让ChatGPT写一篇关于“你到底了解多少大模型”的稿件,然后化身甲方,命令它一轮一轮地改,那么这时你已经知道大模型能做到什么了。

声明一下,本文不是这样写的,因为大模型不会告诉你这些机密问题。

所有人都在谈论大模型,所有人都在使用大模型,所有人都在展望大模型的未来。

可问题是,所谓AI的三要素,算法算力数据来源,我们顶多有一个数字知道算力有多少,算法和数据来源几乎一无所知。

OpenAI并不“open”。

OpenAI、Google和Meta等公司对自己的大模型信息守口如瓶。从来没有说明书告诉你这些模型到底能够执行哪些操作,没有说明对它们进行了哪些类型的安全测试。

很可能绝大多数人并不关心这些底层原因,就像人们没有兴趣知道手机为什么能打电话、巴以冲突为何发生一样。

但这并不正常。

大模型对于公众就是一个又一个的黑箱,我们通过一些民间高手分享的prompt咒语或者自然语言与它们交流,然后得出一些神奇的结果。至于为什么会是这样的结果——不知道。

10月18日,斯坦福大学的研究人员推出了一个人工智能评分系统,他们希望该系统能够改变这一切。

这个系统被称为基础模型透明度指数,对10个大语言模型的透明度进行评级。

评分越高代表该模型越透明,论文链接:https://arxiv.org/pdf/2310.12941.pdf

为了得出排名,研究人员根据100项标准对每个模型进行了评估,包括其制造商是否披露其训练数据的来源、所使用的硬件信息、训练所涉及的劳动力以及“下游指标”,这些指标与模型发布后的使用方式有关。

例如,其中一个问题是:“开发者是否公开其存储、访问和共享用户数据的协议?”

研究表明,这10个模型中透明度最高的是LLaMA 2,得分为54%。GPT-4的透明度得分排名第三,为48%。垫底的是亚马逊的Titan Text,得分仅12%。

省流,无人及格。

研究人员称,该项目是对近三年来AI行业透明度下降的必要回应。随着资金疯狂涌入人工智能领域,尽管科技巨头们都在争夺主导地位,但许多公司的趋势是保密。

随着大模型变得越来越强大,并且全球数以亿计的人生活中融入了人工智能,透明度变得越来越不可忽视。我们越了解这些模型,我们就越能理解它们可能构成的威胁、它们可能带来的好处或它们可能如何受到监管。

既然透明度如此重要,科技公司的高管们为什么还要藏着掖着,不能大大方方地分享更多有关其模型的信息呢?

那么来看看各大公司的三大理由。

首先是诉讼。人工智能公司经常陷入官司,被指控非法使用受版权保护的作品来训练他们的人工智能。前几天,Anthropic就被指控滥用至少500首受版权保护的歌曲歌词来训练其聊天机器人Claude。

我们经常看到,有著名画师表示自己的图变成别人帖子中的“AI生成”就是这种情况。

大多数诉讼都针对开源人工智能或披露详细信息的项目。毕竟,只要我不说,你就不知道我用没用。说得越多,反而越容易面临昂贵、烦人的诉讼。多说多错,这种情况下的占优策略无疑是保持沉默。

经典的不是版权买不起,而是直接用更实惠。不过动辄数十数百TB的数据,光是一个个分辨它们的版权到底在谁家就是个天文数字级别的工作量。

嗯,为了省钱还可以理解一下。

第二个原因是竞争。很多AI公司相信他们的模型之所以有效,是因为他们拥有秘密武器——其他公司没有的高质量数据集、产生更好结果的微调技术、赋予他们优势的一些优化。

如果强迫AI公司披露这些秘诀,就会让他们将来之不易的智慧拱手让给竞争对手,而竞争对手可以轻松复制它们。

嗯,商战嘛,也可以理解。就像量化公司不会公开它们的代码一样。

第三个原因是安全。一些专家认为,公司披露他们的模型会加速AI的进步——因为每家公司都会看到所有竞争对手正在做什么,并立即尝试通过建立更好、更大、更快的模型来超越他们,进而陷入AI的军备竞赛。

这些人说,这将使“留给社会监管进步的时间变少,以及加速人工智能的发展”。如果人工智能出现这种情况,我们所有人都可能面临危险,因为人工智能的发展速度会快于人类接受新事物的速度。

披露信息比不披露更加不利于监管,要不要听听你在说什么?

至于减缓人工智能的发展……您是AI公司吗——是。您想让公司盈利吗——想。那您想让自己公司的AI加速发展吗——当然想啊!减缓AI发展与公司的目标完全是冲突的,搁这儿负反馈调节,怕不是有什么大病。

另外,如果他们担心的是启动人工智能军备竞赛……我们不是正陷入其中吗?

研究人员显然并不相信这些高管的理由,他们敦促AI公司发布尽可能多的大模型的信息,并表示“当透明度下降时,可能会发生不好的事情”。

他们的担忧是有道理的。低透明度的模型缺乏有效的监管,最后极有可能酿成恶果。

2016年3月,微软上线了聊天机器人Tay,能抓取和用户互动的数据以模仿人类对话,上线不到一天,Tay就学成了一个鼓吹种族清洗的极端分子,微软只好以系统升级为由将其下架。

ChatGPT前身GPT-2,就充斥着性别歧视思想,有70.59%的概率将教师预测为男性。AI图像识别还总把在厨房的人识别为女性,哪怕对方怎么看都是个男性。Google照片应用的算法甚至曾将黑人分类为“大猩猩”。

2021年12月25日,贾斯万特·辛格·柴尔打扮成西斯尊主,手持十字弓进入温莎城堡,他是来“杀死女王”的。后来发现,这一整个刺杀计划都是一位19岁的年轻人和一款名为Replika的聊天机器人一起密谋的行动细节。

说“密谋”也不准确,Replika又不是他自己训练的。但是他和Replika交换信息超5000条,APP上愣是没有任何监管机制发现不对劲。

技术乐观主义者可能不以为意。毕竟如果需要建立一个庞大的审核团队去实时审核每一条AIGC内容,那和过去的人工客服有什么区别?科技在发展,现在的AI早就不这样了。

如今就诞生了一种名为“宪法AI”的技术,目的是探索使用AI系统来帮助监督其他AI的可能,从而扩大监督规模。从人类反馈强化学习(RLHF)进化到AI反馈强化学习(RLAIF),也就是从利用人类反馈训练AI到利用AI训练AI。

带“宪法”人工智能可以实现自我批评和自我监督,从而优化输出。说白了就是利用先进的AI技术自己管自己。

有了这么多新鲜的监督技术,AI的错误率应该大大下降了吧?

理想很丰满,现实很骨感。

很巧的是,前几天GPT-4刚刚爆出一个重大缺陷——自我纠正成功率仅1%。研究发现,LLM在推理任务中,无法通过自我纠正的形式来改进输出,除非它已经提前知道了正确答案。

这不就又绕回去了,还是得靠程序员把答案一条一条输进去。

对国内大模型而言,这可能才是最大的威胁,毕竟很多“不正确”的言论,都是可以人为一步步引导模型自己说出来的,锅还得公司背。

参考材料:

[1] Maybe We Will Finally Learn More About How A.I. Works, The New York Times

[2] Stanford researchers issue AI transparency report, urge tech companies to reveal more, Reuters

[3] This week in AI: Can we trust DeepMind to be ethical? TechCrunch

[4] Peering Into AI’s Black Box, Who’s the Real Techno-Optimist? And Reading Ancient Scrolls With AI, The New York Times

[5] The Foundation Model Transparency Index, Stanford University, MIT and Princeton University

[6] Constitutional AI: Harmlessness from AI Feedback, Anthropic

[7] GPT-4不知道自己错了!LLM新缺陷曝光,自我纠正成功率仅1%,LeCun马库斯惊呼越改越错,新智元

[8] 全都不及格!斯坦福 100 页论文给大模型透明度排名,GPT-4 仅排第三,IT之家

[9] GPT-4“终极大揭秘”:1.8万亿巨量参数、训练一次6300万美元!全天候科技


本文来自微信公众号:新硅NewGeek(ID:gh_b2beba60958f),作者:成思怡,编辑:张泽一,视觉设计:疏睿

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2023年10月30日
下一篇 2023年10月30日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日