“AI吞金兽”正在威胁大厂

 

相比,亚马逊最近几年的资本性支出相对稳定,2020年至2023年依次为350亿美元、554亿美元、583亿美元和481亿美元。

尤其是前两年阿里北京总部和全球总部园区建设,使得在建工程与土地使用权这一单项的资本性开支在2020财年、2021财年和2022财年分别达到79亿元、53亿元和113亿元,如果剔除这个因素,并考虑到近两年缩减了新零售基建投入,公司实际花在云与AI上的资本性支出也呈现增长趋势。

一个服务于1000万日活跃用户数的通用大模型,至少需要年收入100亿元才可能保持收支平衡,如果未来能服务1亿日活用户呢?10亿日活用户呢?

 

每增加一个AI大模型用户,公司付出的边际成本远高于电商、社交、短视频等领域的单位拉新成本。这些是业内流传的一组数据,说明人工智能的训练和推理成本对一家公司的现金流是极大的考验。

 

AI到底有多费钱?即便有上述这组数字,我们也缺乏一种直观印象。眼看新一轮财报季来临,各大厂又将不约而同地展示AI贡献、宣布增加AI投入。下面就从谷歌、Meta、阿里巴巴、微软、亚马逊等大型科技企业的财报中收集详细数据,来分析大厂对AI持续投入是一个怎样的场面,是否投入越多就越能在下一个互联网周期到来时傲视群雄?

 

学会看“资本性支出”

 

谷歌母公司Alphabet首席财务官Ruth Porat近期透露,预计公司在2024年的资本性支出(CapEx)将比2023年有显著性增加(notably larger than 2023),尤其是对AI芯片的投入上。该公司也在2023年报中说,未来将继续加大资本性开支,以支持长期的AI布局。该公司此前对2024年的资本性支出预期范围是300亿至370亿美元,后来把指引提升到350亿至400亿美元。

 

上面表格是根据Alphabet历年年报罗列的资本性支出和对应的现金流情况。从2022年开始,资本性支出呈现显著增加趋势,但经营活动现金流净额,以及年末的现金及现金等价物的增长并不明显。单从数字看,公司每年资本性支出大约占到经营现金流的三分之一,而经营现金流减去资本性支出后,就是自由现金流。

 

我们为什么把资本性支出视为衡量这类公司在AI、云计算等基础设施服务上的投入程度呢?

 

所谓资本性支出,简单说就是这些钱不是花在当季的,要相应地摊销/折旧到以后的每个会计年度,它不像营销费用、股权激励这些开销,它是为以后长期带来收益的一种投入,比如传统企业扩建厂房、购置设备等大件开销。

对于互联网公司有所不同,比如Alphabet在年报中解释资本性支出主要针对服务器、网络设备、数据中心等技术基础设施。2022年后AI浪潮严重左右了这些公司在技术基建上投入的方向,这从“所有App都值得用AI重新做一遍”“AI将在未来几年为公司带来数百亿美元收入”的高管表态中也有所体现。因此把AI相关成本与科技企业的资本性支出做强关联,是比较合理的。业务层面上,AI也离不开云。

 

事实上,与2022年之前相比,2022年后这类公司在资本性支出上明显大幅增加,甚至翻倍,这在往年并不常见。而在这一场围绕AI的技术军备竞赛中,这个趋势仍在持续加剧。除了Alphabet,我们也在微软、Facebook母公司Meta、阿里巴巴等大公司年报中看到这种趋势。

 

相比,亚马逊最近几年的资本性支出相对稳定,2020年至2023年依次为350亿美元、554亿美元、583亿美元和481亿美元。亚马逊在AI领域目前主要采用自研芯片(训练和推理)+入股外部AI公司(如前后两次共计40亿美元入股Anthropic,并购资金不计入资本性支出)的策略;而且与轻资产的微软和Meta相比,亚马逊资本性支出中包含了重资产的仓储物流这一影响因素。

 

而阿里巴巴的相关数据有一些特殊性。其2020财年至2023财年的资本性支出依次为326亿元、415亿元、533亿元和343亿元,主要包括云计算数据中心、物流基础设施、购置园区的在建工程与土地使用权,以及前些年热衷的新零售基建。

尤其是前两年阿里北京总部和全球总部园区建设,使得在建工程与土地使用权这一单项的资本性开支在2020财年、2021财年和2022财年分别达到79亿元、53亿元和113亿元,如果剔除这个因素,并考虑到近两年缩减了新零售基建投入,公司实际花在云与AI上的资本性支出也呈现增长趋势。

 

总之,由于AI大模型持续高昂的训练和推理成本,以及英伟达GPU芯片价格的水涨船高,使得云计算大厂在这个新赛道上的投入比以前大得多。AI成本就像一个无底洞,让现金流卷入漩涡中,这是大厂面临的一个共同难题。

 

平衡被再一次打破

 

Meta公司前不久称一季度收入会低于分析师预期,同时宣布提高人工智能投入,导致其股价在盘后交易中暴跌15%。投资人担心巨大的AI成本会对公司经营业绩造成负面影响。这些投入主要集中在数据中心、AI芯片设计研发上。由原Facebook的VR/AR部门重组为Reality Labs的实验室,在一季度花了38亿美元,但只取得了4.4亿美元收入。

 

另一边,谷歌目前需要平衡内、外部对计算资源的消耗关系,由于算力供不应求,谷歌内部业务一度拿不到新增的计算资源。它对外投资20亿美元的人工智能公司Anthropic也在通过谷歌云使用它的TPUs算力(这家公司同时也在用亚马逊的自研芯片)。在这种供需矛盾中,谷歌只得修剪业务枝叶,把算力用在内、外部增长性更强的业务需求上。

 

这种把所有资源集中在同一个赛道的局面在过往互联网发展中从未出现。在互联网拓荒期,各家公司在电商、物流、社交网络、云计算等领域分头投资布局。像亚马逊重仓仓储网络,京东自建物流,确立各自的领先范围,井水不犯河水;后来各自领域的边际效应下降,又开始互相渗透对手领地,微软进攻谷歌的搜索和亚马逊的云计算,亚马逊挑战Facebook和谷歌的广告业务,美团和阿里在零售与本地生活领域打了数个回合……

连环攻守,从而在市场份额上达到一个新的平衡;当几乎所有领域的边际效应都递减到一定程度,缺乏新增空间时,大厂现在纷纷瞄准了AI,统一了进攻目标,平衡再一次被打破。

 

但是,当大家都在争夺同一个东西时,就都失去了溢价能力,边际成本不断上涨。相信一句话,总有人在逆势中赚到钱。这时候却便宜了“做钓鱼竿”和“卖铲子”的人,英伟达成了最大受益者,连几家大厂都对外宣称自己和英伟达的关系有多铁,能第一批享用最新推向市场的GPU芯片。英伟达在过去十年将算力成本降低了1000倍,并通过软硬件一体化策略牢牢接住了AI风口上刮过来的馅饼。

为降低成本,对英伟达又爱又恨的大厂们开始自己造芯片和AI加速器,比如亚马逊的Gravition、阿里的平头哥产品、百度的昆仑系列、谷歌的TPUs和Axion、微软的Azure Maia等。但这些芯片多数是定制化、非标化、自用型的产品,目前在机器学习上还不能完全取代英伟达H100。提供标准化服务的英伟达可能并不担心对手能把算力做多大。

 

为了凸显AI高成本投入的回报前景,未来大厂财报中会更频繁地出现类似表述,“由AI拉动的增长达到多少多少”。微软高管在一季报时曾披露,在云计算Azure一季度31%的同比增长中,AI贡献占了7个百分点。

 

当AI大模型陆续渗透到各公司所有业务中时,就很难再界定哪些是由AI拉动的。比如ChatGPT嵌入到Azure、Bing、Microsoft 365微软全家桶中;阿里把通义千问嵌入到钉钉应用中;谷歌把Gemini Chatbox植入搜索和广告业务里。

这些都不是像微软对数字助手Copilot用户每月收取30美元的直接变现,而是把AI作为一个底层能力,助推原有的上层业务获得新的收入增长。从几家公有云大厂营收增速有所回暖看,AI确实发挥了一定的作用。

 

总结:新的平衡

 

在互联网拓荒期,长期亏损的亚马逊能让投资人津津乐道的是总能看到新的增长点。贝索斯不追求短期盈利(投资人似乎也不在意这些),而是喜欢把资金大量投入到仓储、云计算这些重资产业务中,在未来给公司带去更大规模的收益和增长性。只要有增速和创新,投资人就有足够的耐心。贝索斯为证明公司实力,总习惯在财报里一上来就展示其充裕的现金流数据,而非利润表数据。

 

但现在时代变了,没有哪个大厂可以不顾及盈利压力,只用增长和创新给投资人“画饼”。在AI这个高度一致性、持续高成本消耗的技术竞赛中,每个有实力的选手都要下场参赛,更大规模的营收预期才能匹配这种级别的投入。大厂纷纷抢跑AI,就是为了在下一个平衡到来前拿到一张新的船票,只不过这张船票太贵了。

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
(0)
上一篇 2024年5月10日 14:43
下一篇 2024年5月10日

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日