“欧洲版OpenAI”联手微软,却被质疑违背初心

Mistral。又放大招

Mistral。

与。

在编码和数学任务中,Mistral。

此外,Mistral。

不过,Mistral。

Mistral。

面对中文脑筋急转弯的拷问,Mistral。出一道数学测试题,上上强度,整体表现还不错:

小模型,大作为

Mistral。

Mistral。

目前,Mistral。

昨晚,号称“欧洲 OpenAI”的 Mistral AI, 发布了其最新的顶级文本生成模型 Mistral Large。

这一模型具备顶级的推理能力,可用于处理复杂的多语言推理任务,涵盖文本理解、转换和代码生成等。

简单划重点:

  • 32K 的上下文窗口,精准提取大型文档信息。

  • 精确的指令跟随能力,便于开发者定制审核策略。

  • 支持函数调用和输出模式限制,助力应用开发规模化和技术栈现代化。

  • 原生支持英语、法语、西班牙语、德语和意大利语,对语法和文化背景有深刻理解。

Mistral AI 又放大招

Mistral Large 在多项基准测试中表现优异,成为全球排名第二的可通过 API 广泛使用的模型,仅次于 GPT-4,并将其他主流模型甩在身后。

与 LLaMA 2 70B、GPT-4、Claude 2、Gemini Pro 1.0 等一众主流模型对比,Mistral Large 在推理能力上展现出强大的实力。

在 MMLU、Hellas、WinoG 等多项常识和推理的基准测试中,Mistral Large 紧随 GPT-4 之后,远超其他模型。

在法语、德语、西班牙语和意大利语的 HellaSwag、Arc Challenge 和 MMLU 基准测试中,Mistral Large 的表现明显优于 LLaMA 2 70B。

在编码和数学任务中,Mistral Large 同样表现出色。多项基准测试依然是遥遥领先。

此外,Mistral AI 还发布了针对延迟和成本优化的新模型Mistral Small,性能超越 Mixtral 8x7B,但延迟更低。

在 Mistral AI 看来,Mistral Small 将是一个介于开源模型和旗舰模型之间的理想中间选择,享有与 Mistral Large 相同的创新优势,尤其是在 RAG(检索增强生成)启用和函数调用方面。

不过,Mistral Small 模型宣称的低延迟特性与 Mixtral 8x7B 相比提升有限,但其成本却显著增加,其中输入成本高出 2.8 倍,输出成本更是高达 8.5 倍。

Mistral Large 现已在 La Plateforme 和 Azure 平台上可用,并集成到了 Le Chat 中。

Le Chat(法语直译为猫)是一个类似 ChatGPT 的 AI 聊天机器人,支持多语言交流。

用户可以在 Mistral Small、Mistral Large 以及 Mistral Next 三种不同的模型之间进行选择。不过,Le Chat 并不支持实时联网功能。

发布后不久,由于涌入体验的人群数量超出预期,Le Chat 直接崩溃了,截至发稿前,Le Chat 已恢复运行。

我们也第一时间体验了一下 Le Chat。取决于语言本身的复杂性和接受训练数据的数量和质量, Le Chat 在英文方面的表达能力较强,中文相对薄弱。

面对中文脑筋急转弯的拷问,Mistral Larg 虽然一开始有点懵,缓了好一阵都没给出答案。

问题:蝴蝶,蚂蚁, 蜘蛛, 蜈蚣,他们一起工作,最后哪一个没有领到酬劳?

换成英文,它就立马变身解题高手,答案条理清晰,逻辑满分,上升到“以人类为中心的工作和奖励视角”,但中文语境的脑筋急转弯可不按常理出牌,毕竟“蜈蚣”不受禄。

鸡兔同笼问题对 Mistral Large 来说,也只是小菜一碟。线性方程组一摆,答案就出来了:16 只鸡和 19 只兔子,完美!

问题:鸡兔同笼,共 35 只头,94 只脚,问鸡兔各多少?

这是一个经典的数学问题,可以使用线性方程组来解决。

假设鸡的数量为 x,兔子的数量为 y ,则可以列出以下两个方程:

1. x + y = 35 (鸡和兔子的总数量为 35 只)

2. 2x + 4y = 94 (鸡有 2 只脚,兔子有 4 只脚,所以总共有 94 只脚)

将第一个方程中的x表示为y的函数,得到 x = 35 – y,代入第二个方程中得到:

2(35 – y) + 4y = 94

解方程得到 y = 19,代入 x = 35 – y,得到 x = 16。

因此,鸡有 16 只,兔子有 19 只。

接着我们让 ChatGPT 给 Mistral Large 出一道数学测试题,上上强度,整体表现还不错:

小模型,大作为

Mistral AI 成立于去年 5 月份,公司员工仅数十人,但其大语言模型早已在 Hugging Face 上名声大噪。

此前,我们曾报道过它发布了 Mixtral 8x7B,这款模型一经推出,瞬间引爆了整个开源社区。

虽然只有 46.7B 的参数规模, 擅长以小博大的 Mixtral 8x7B 在众多基准测试中的表现却能与 Llama 2 70B 和 GPT-3.5 媲美,甚至在某些测试中还略胜一筹。

Mistral AI 的成功秘诀在于它巧妙地融合了 AI 领域的三大核心要素——人才、数据、算力。

《经济学人》透露,Mistral AI 创始人和技术骨干均来自法国精英技术学院,并在 Google 和 Meta 等科技巨头的研究实验室积累了宝贵的业界经验。他们是全球为数不多,真正掌握如何培训前沿模型技术的专家。

其次,数据是 Mistral AI 成功的另一个法宝。Mistral 在模型数据培训上独具匠心,例如,模型能够有效地过滤掉重复或无意义的信息,使得模型更加精简高效,参数规模仅数十亿。

这就意味着,普通用户甚至可以在自己的个人电脑上轻松运行 Mistral AI 的模型

对于 Mistral Large 的到来,图灵奖得主 Yann LeCun、以及英伟达高级科学家 Jim Fan 等一众大佬也纷纷在 X 上送上了祝贺。

目前,Mistral AI 的估值已经超过 20 亿美元,其背后的投资阵容的豪华程度,与世界顶级企业相比也毫不逊色。

从美国顶尖的风投公司如光速创投、红点创投、指数创投,到硅谷的风险投资巨头 a16z、英伟达、Salesforce、法国巴黎银行等,都对 Mistral AI 青睐有加。经过数轮融资,Mistral AI 也早已迈入了 AI 独角兽的行列。

微软昨天也宣布与 Mistral AI 建立新的合作伙伴关系,承诺和 Mistral AI 之间的合作集中在以下三个关键领域:

超算基础结构:微软将通过 Azure AI 超算基础结构支持 Mistral AI,用于 AI 训练和推理工作负载。  

扩展市场:微软和 Mistral AI 将通过 Azure AI Studio 中的 MaaS 和 Azure 机器学习模型目录,向客户提供 Mistral AI 的高级模型。

AI 研发:微软和 Mistral AI 将探索合作,为指定的客户开发专有模型,甚至包括欧洲公共部门的工作负载。

但微软这一举动遭到了网友的质疑。X 用户 @osxzxso 暗讽微软试图采取一种“盘根错节”的策略来垄断市场。马斯克也在评论区以哭笑不得的表情表示赞同。

值得一提的是,细心的网友观察到,在 Mistral AI 推出新模型之后,其官方网站上关于对开源社区承诺的相关内容已经悄然消失,且新模型也不支持开源

但 Mistral CEO Mensch 在接受《华尔街日报》采访时表示, Mistral AI 并未违背开源的初衷,而是采用同时推进商业化战略和维持开源承诺的双重策略。

显然,在构建商业模式和保持我们的开源价值观之间,我们需要找到一个细小的平衡点。我们希望发明新事物和新的架构,同时也希望向我们的客户提供更多可销售的产品。

本文来自微信公众号:APPSO (ID:appsolution),作者:莫崇宇

声明: 该内容为作者独立观点,不代表新零售资讯观点或立场,文章为网友投稿上传,版权归原作者所有,未经允许不得转载。 新零售资讯站仅提供信息存储服务,如发现文章、图片等侵权行为,侵权责任由作者本人承担。 如对本稿件有异议或投诉,请联系:wuchangxu@youzan.com
Like (0)
Previous 2024年2月27日 15:08
Next 2024年2月27日 15:20

相关推荐

  • 水温80度:AI行业真假繁荣的临界点

    我们从来没拥有过这么成功的AI主导的产品。

    (这种分析统计并不那么准,但大致数量级是差不多的)

    这两个产品碰巧可以用来比较有两个原因:

    一个是它们在本质上是一种东西,只不过一个更通用,一个更垂直。

    蓝海的海峡

    未来成功的AI产品是什么样,大致形态已经比较清楚了,从智能音箱和Copilot这两个成功的AI产品上已经能看到足够的产品特征。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时“罢工”,全网打工人都慌了

    美西时间午夜12点开始,陆续有用户发现自己的ChatGPT要么响应超时、要么没有对话框或提示流量过载,忽然无法正常工作了。

    因为发现AI用久了,导致现在“离了ChatGPT,大脑根本无法运转”。”

    等等,又不是只有一个聊天机器人,难道地球离了ChatGPT就不转了。

    大模型连崩原因猜想,谷歌躺赢流量激增6成

    GPT归位,人们的工作终于又恢复了秩序。

    未来科技 2024年6月5日
  • ChatGPT宕机8小时,谷歌Gemini搜索量激增60%

    ChatGPT一天宕机两次

    谷歌Gemini搜索量激增近60%

    ChatGPT在全球拥有约1.8亿活跃用户,已成为部分人群工作流程的关键部分。

    过去24小时内提交的关于OpenAI宕机的问题报告

    图片来源:Downdetector

    ChatGPT系统崩溃后,有网友在社交媒体X上发帖警告道:“ChatGPT最近发生的2.5小时全球中断,为我们所有依赖AI工具来支持业务的人敲响了警钟。

    未来科技 2024年6月5日
  • ChatGPT、Perplexity、Claude同时大崩溃,AI集体罢工让全网都慌了

    接着OpenAI也在官网更新了恢复服务公告,表示“我们经历了一次重大故障,影响了所有ChatGPT用户的所有计划。Generator调查显示,在ChatGPT首次故障后的四小时内,谷歌AI聊天机器人Gemini搜索量激增60%,达到327058次。

    而且研究团队表示,“Gemini”搜索量的增长与“ChatGPT故障”关键词的搜索趋势高度相关,显示出用户把Gemini视为ChatGPT的直接替代选项。

    未来科技 2024年6月5日
  • 深度对话苹果iPad团队:玻璃的传承与演变

    iPad最为原始的外观专利

    没错,这就是iPad最初被设想的样子:全面屏,圆角矩形,纤薄,就像一片掌心里的玻璃。

    2010年发布的初代iPad

    好在乔布斯的遗志,并未被iPad团队遗忘。

    初代iPad宣传片画面

    乔布斯赞同这一想法,于是快速将资源投入平板电脑项目,意欲打造一款与众不同的「上网本」,这就是iPad早年的产品定义。

    iPad进化的底色

    苹果发布会留下过很多「名场面」,初代iPad发布会的末尾就是一例。

    未来科技 2024年6月5日
  • 底层逻辑未通,影视业的AI革命正在褪色…

    GPT、Sora均为革命性产品,引发了舆论风暴,但它在上个月发布的“多模态语音对谈”Sky语音,却由于声音太像电影明星斯嘉丽·约翰逊,被正主强烈警告,被迫下架。

    华尔街日报也在唱衰,认为“AI工具创新步伐正在放缓,实用性有限,运行成本过高”:

    首先,互联网上已经没有更多额外的数据供人工智能模型收集、训练。

    03、

    如果说训练“数字人”、使用AI配音本质上瞄向的仍是影视行业固有的发展方向,那么还有另外一群人试图从根本上颠覆影视行业的生产逻辑和产品形态。

    但分歧点正在于此,电影公司希望通过使用AI技术来降低成本,但又不希望自己的内容被AI公司所窃取。

    未来科技 2024年6月5日
  • KAN会引起大模型的范式转变吗?

    “先变后加”代替“先加后变”的设计,使得KAN的每一个连接都相当于一个“小型网络”, 能实现更强的表达能力。

    KAN的主要贡献在于,在当前深度学习的背景下重新审视K氏表示定理,将上述创新网络泛化到任意宽度和深度,并以科学发现为目标进行了一系列实验,展示了其作为“AI+科学”基础模型的潜在作用。

    KAN与MLP的对照表:

    KAN使神经元之间的非线性转变更加细粒度和多样化。

    未来科技 2024年6月5日
  • 这个国家,也开始发芯片补贴了

    //mp.weixin.qq.com/s/tIHSNsqF6HRVe2mabgfp6Q
    [4]中国安防协会:欧盟批准430亿欧元芯片补贴计划:2030年产量占全球份额翻番.2023.4.19.https。//mp.weixin.qq.com/s/VnEjzKhmZbuBUFclzGFloA
    [6]潮电穿戴:印度半导体投资大跃进,一锤砸下1090亿,政府补贴一半.2024.3.5https。

    未来科技 2024年6月5日
  • 大模型的电力经济学:中国AI需要多少电力?

    这些报告研究对象(数字中心、智能数据中心、加密货币等)、研究市场(全球、中国与美国等)、研究周期(多数截至2030年)各不相同,但基本逻辑大同小异:先根据芯片等硬件的算力与功率,计算出数据中心的用电量,再根据算力增长的预期、芯片能效提升的预期,以及数据中心能效(PUE)提升的预期,来推测未来一段时间内智能数据中心的用电量增长情况。

    未来科技 2024年6月5日
  • 你正和20万人一起接受AI面试

    原本客户还担心候选人能否接受AI面试这件事,但在2020年以后,候选人进行AI面试的过程已经是完全自动化的,包括面试过程中AI面试官回答候选人的问题,AI面试官对候选人提问以及基于候选人的回答对候选人进行至多三个轮次的深度追问。

    以近屿智能与客户合作的校验周期至少3年来看,方小雷认为AI应用不太可能一下子爆发,包括近屿智能在内的中国AI应用企业或许要迎来一个把SaaS做起来的好机会。

    未来科技 2024年6月4日